Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Feb;79(5-6):843–849. doi: 10.1038/sj.bjc.6690135

Modification of non-conservative double-strand break (DSB) rejoining activity after the induction of cisplatin resistance in human tumour cells

R A Britten 1, S Kuny 1, S Perdue 1
PMCID: PMC2362674  PMID: 10070879

Abstract

The induction of collateral radioresistance after the development of cisplatin resistance is a well-documented phenomenon; however, the exact processes that are responsible for the cisplatin-induced radioresistance remain to be elucidated. There was no obvious difference in the level of radiation-induced DNA double strand breaks (DSBs), in DSB rejoining rates, or the level of the catalytic subunit of the DNA-dependent protein kinase (DNA-PKcs) in the cisplatin- and radiation-sensitive 2780/WT and cisplatin-resistant 2780/CP cell lines. However, there was a significantly (P< 0.01) lower level of DSB misrejoining activity within nuclear protein extracts derived from the cisplatin-and radiation-sensitive 2780/WT and OAW42/WT tumour cell lines than in similar extracts from their cisplatin- (and radiation-) resistant 2780/CP and OAW42/CP counterparts. All of the DSB misrejoining events involved deletions of between 134 and 444 bp that arose through illegitimate recombination at short repetitive sequences, such as those that arise through non-homologous repair (NHR). These data further support the notion that the radiosensitivity of DSB repair proficient human tumour cell lines may be partly determined by the predisposition of these cell lines to activate non-conservative DSB rejoining pathways. Furthermore, our data suggest that the induction of acquired cisplatin resistance is associated with a two- to threefold decrease in the activity of a non-conservative DSB rejoining mechanism that appears to be a manifestation of NHR. © 1999 Cancer Research Campaign

Keywords: γ-radiation, cisplatin resistance, DNA repair, repair fidelity, human ovarian tumour cells

Full Text

The Full Text of this article is available as a PDF (96.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bill C. A., Yu Y., Miselis N. R., Little J. B., Nickoloff J. A. A role for p53 in DNA end rejoining by human cell extracts. Mutat Res. 1997 Oct;385(1):21–29. doi: 10.1016/s0921-8777(97)00040-2. [DOI] [PubMed] [Google Scholar]
  2. Britten R. A., Liu D., Kuny S., Allalunis-Turner M. J. Differential level of DSB repair fidelity effected by nuclear protein extracts derived from radiosensitive and radioresistant human tumour cells. Br J Cancer. 1997;76(11):1440–1447. doi: 10.1038/bjc.1997.576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Britten R. A., Warenius H. M., Masters J. R., Peacock J. H. The differential induction of collateral resistance to 62.5 MeV (p-->Be+) neutrons and 4 MeV photons by exposure to cis-platinum. Int J Radiat Oncol Biol Phys. 1993 Aug 1;26(5):837–843. doi: 10.1016/0360-3016(93)90499-l. [DOI] [PubMed] [Google Scholar]
  4. Bryant P. E., Liu N. Responses of radiosensitive repair-proficient cell lines to restriction endonucleases. Int J Radiat Biol. 1994 Nov;66(5):597–601. doi: 10.1080/09553009414551681. [DOI] [PubMed] [Google Scholar]
  5. Cizeau J., Decoville M., Leng M., Locker D. Large deletions induced in the white gene of Drosophila melanogaster by the antitumoral drug cis-dichlorodiammineplatinum(II): influence of non-homologous recombination. Mutat Res. 1996 Sep 23;356(2):197–202. doi: 10.1016/0027-5107(96)00059-0. [DOI] [PubMed] [Google Scholar]
  6. Cox R., Masson W. K., Debenham P. G., Webb M. B. The use of recombinant DNA plasmids for the determination of DNA-repair and recombination in cultured mammalian cells. Br J Cancer Suppl. 1984;6:67–72. [PMC free article] [PubMed] [Google Scholar]
  7. Fishel R., Derbyshire M. K., Moore S. P., Young C. S. Biochemical studies of homologous and nonhomologous recombination in human cells. Biochimie. 1991 Feb-Mar;73(2-3):257–267. doi: 10.1016/0300-9084(91)90211-i. [DOI] [PubMed] [Google Scholar]
  8. Ganesh A., North P., Thacker J. Repair and misrepair of site-specific DNA double-strand breaks by human cell extracts. Mutat Res. 1993 May;299(3-4):251–259. doi: 10.1016/0165-1218(93)90101-i. [DOI] [PubMed] [Google Scholar]
  9. Giaccia A., Weinstein R., Hu J., Stamato T. D. Cell cycle-dependent repair of double-strand DNA breaks in a gamma-ray-sensitive Chinese hamster cell. Somat Cell Mol Genet. 1985 Sep;11(5):485–491. doi: 10.1007/BF01534842. [DOI] [PubMed] [Google Scholar]
  10. Hida T., Ueda R., Takahashi T., Watanabe H., Kato T., Suyama M., Sugiura T., Ariyoshi Y., Takahashi T. Chemosensitivity and radiosensitivity of small cell lung cancer cell lines studied by a newly developed 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) hybrid assay. Cancer Res. 1989 Sep 1;49(17):4785–4790. [PubMed] [Google Scholar]
  11. Kirchgessner C. U., Patil C. K., Evans J. W., Cuomo C. A., Fried L. M., Carter T., Oettinger M. A., Brown J. M. DNA-dependent kinase (p350) as a candidate gene for the murine SCID defect. Science. 1995 Feb 24;267(5201):1178–1183. doi: 10.1126/science.7855601. [DOI] [PubMed] [Google Scholar]
  12. Lambin P., Coco-Martin J., Legal J. D., Begg A. C., Parmentier C., Joiner M. C., Malaise E. P. Intrinsic radiosensitivity and chromosome aberration analysis using fluorescence in situ hybridization in cells of two human tumor cell lines. Radiat Res. 1994 Apr;138(1 Suppl):S40–S43. [PubMed] [Google Scholar]
  13. Lees-Miller S. P., Godbout R., Chan D. W., Weinfeld M., Day R. S., 3rd, Barron G. M., Allalunis-Turner J. Absence of p350 subunit of DNA-activated protein kinase from a radiosensitive human cell line. Science. 1995 Feb 24;267(5201):1183–1185. doi: 10.1126/science.7855602. [DOI] [PubMed] [Google Scholar]
  14. Liu N., Bryant P. E. Response of ataxia telangiectasia cells to restriction endonuclease induced DNA double-strand breaks: I. Cytogenetic characterization. Mutagenesis. 1993 Nov;8(6):503–510. doi: 10.1093/mutage/8.6.503. [DOI] [PubMed] [Google Scholar]
  15. Louie K. G., Behrens B. C., Kinsella T. J., Hamilton T. C., Grotzinger K. R., McKoy W. M., Winker M. A., Ozols R. F. Radiation survival parameters of antineoplastic drug-sensitive and -resistant human ovarian cancer cell lines and their modification by buthionine sulfoximine. Cancer Res. 1985 May;45(5):2110–2115. [PubMed] [Google Scholar]
  16. Luo C. M., Tang W., Mekeel K. L., DeFrank J. S., Anné P. R., Powell S. N. High frequency and error-prone DNA recombination in ataxia telangiectasia cell lines. J Biol Chem. 1996 Feb 23;271(8):4497–4503. doi: 10.1074/jbc.271.8.4497. [DOI] [PubMed] [Google Scholar]
  17. McKay M. J., Kefford R. F. The spectrum of in vitro radiosensitivity in four human melanoma cell lines is not accounted for by differential induction or rejoining of DNA double strand breaks. Int J Radiat Oncol Biol Phys. 1995 Jan 15;31(2):345–352. doi: 10.1016/0360-3016(94)e0147-c. [DOI] [PubMed] [Google Scholar]
  18. Murray D., Simpson R., Rosenberg E., Carraway A., Britten R. Correlation between gamma-ray-induced DNA double-strand breakage and cell killing after biologically relevant doses: analysis by pulsed-field gel electrophoresis. Int J Radiat Biol. 1994 Apr;65(4):419–426. doi: 10.1080/09553009414550491. [DOI] [PubMed] [Google Scholar]
  19. Olive P. L., Banáth J. P., MacPhail H. S. Lack of a correlation between radiosensitivity and DNA double-strand break induction or rejoining in six human tumor cell lines. Cancer Res. 1994 Jul 15;54(14):3939–3946. [PubMed] [Google Scholar]
  20. Powell S. N., McMillan T. J. The repair fidelity of restriction enzyme-induced double strand breaks in plasmid DNA correlates with radioresistance in human tumor cell lines. Int J Radiat Oncol Biol Phys. 1994 Jul 30;29(5):1035–1040. doi: 10.1016/0360-3016(94)90399-9. [DOI] [PubMed] [Google Scholar]
  21. Powell S. N., Whitaker S. J., Edwards S. M., McMillan T. J. A DNA repair defect in a radiation-sensitive clone of a human bladder carcinoma cell line. Br J Cancer. 1992 Jun;65(6):798–802. doi: 10.1038/bjc.1992.171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Powell S., McMillan T. J. Clonal variation of DNA repair in a human glioma cell line. Radiother Oncol. 1991 Aug;21(4):225–232. doi: 10.1016/0167-8140(91)90046-j. [DOI] [PubMed] [Google Scholar]
  23. Powell S., Whitaker S., Peacock J., McMillan T. Ataxia telangiectasia: an investigation of the repair defect in the cell line AT5BIVA by plasmid reconstitution. Mutat Res. 1993 Jun;294(1):9–20. doi: 10.1016/0921-8777(93)90053-j. [DOI] [PubMed] [Google Scholar]
  24. Russell N. S., Arlett C. F., Bartelink H., Begg A. C. Use of fluorescence in situ hybridization to determine the relationship between chromosome aberrations and cell survival in eight human fibroblast strains. Int J Radiat Biol. 1995 Aug;68(2):185–196. doi: 10.1080/09553009514551091. [DOI] [PubMed] [Google Scholar]
  25. Sasai K., Evans J. W., Kovacs M. S., Brown J. M. Prediction of human cell radiosensitivity: comparison of clonogenic assay with chromosome aberrations scored using premature chromosome condensation with fluorescence in situ hybridization. Int J Radiat Oncol Biol Phys. 1994 Dec 1;30(5):1127–1132. doi: 10.1016/0360-3016(94)90319-0. [DOI] [PubMed] [Google Scholar]
  26. Schwartz J. L., Vaughan A. T. Association among DNA/chromosome break rejoining rates, chromatin structure alterations, and radiation sensitivity in human tumor cell lines. Cancer Res. 1989 Sep 15;49(18):5054–5057. [PubMed] [Google Scholar]
  27. Smeets M. F., Mooren E. H., Begg A. C. Radiation-induced DNA damage and repair in radiosensitive and radioresistant human tumour cells measured by field inversion gel electrophoresis. Int J Radiat Biol. 1993 Jun;63(6):703–713. doi: 10.1080/09553009314552101. [DOI] [PubMed] [Google Scholar]
  28. Taccioli G. E., Gottlieb T. M., Blunt T., Priestley A., Demengeot J., Mizuta R., Lehmann A. R., Alt F. W., Jackson S. P., Jeggo P. A. Ku80: product of the XRCC5 gene and its role in DNA repair and V(D)J recombination. Science. 1994 Sep 2;265(5177):1442–1445. doi: 10.1126/science.8073286. [DOI] [PubMed] [Google Scholar]
  29. Thacker J., Chalk J., Ganesh A., North P. A mechanism for deletion formation in DNA by human cell extracts: the involvement of short sequence repeats. Nucleic Acids Res. 1992 Dec 11;20(23):6183–6188. doi: 10.1093/nar/20.23.6183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Thacker J., Ganesh A. N. DNA-break repair, radioresistance of DNA synthesis, and camptothecin sensitivity in the radiation-sensitive irs mutants: comparisons to ataxia-telangiectasia cells. Mutat Res. 1990 Mar;235(2):49–58. doi: 10.1016/0921-8777(90)90057-c. [DOI] [PubMed] [Google Scholar]
  31. Turchi J. J., Patrick S. M., Henkels K. M. Mechanism of DNA-dependent protein kinase inhibition by cis-diamminedichloroplatinum(II)-damaged DNA. Biochemistry. 1997 Jun 17;36(24):7586–7593. doi: 10.1021/bi963124q. [DOI] [PubMed] [Google Scholar]
  32. Twentyman P. R., Wright K. A., Rhodes T. Radiation response of human lung cancer cells with inherent and acquired resistance to cisplatin. Int J Radiat Oncol Biol Phys. 1991 Feb;20(2):217–220. doi: 10.1016/0360-3016(91)90093-j. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES