Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Feb;79(5-6):838–842. doi: 10.1038/sj.bjc.6690134

The pH partition theory predicts the accumulation and toxicity of doxorubicin in normal and low-pH-adapted cells

L E Gerweck 1, S V Kozin 1, S J Stocks 1
PMCID: PMC2362684  PMID: 10070878

Abstract

The accumulation and toxicity of the weak base doxorubicin has been investigated as a function of extracellular pH, intracellular pH and the cellular pH gradient in cells previously cultured under normal (pH 7.4) and low-pH (6.8) conditions. Low-pH-adapted cells exhibit transmembrane pH gradients which substantially differ from normal cells at the same extracellular pH. No relationship was obtained between intracellular pH and the uptake or toxicity of doxorubicin in the two cell types. In contrast, doxorubicin accumulation and toxicity increased with increasing extracellular pH in both normal and low-pH-adapted cells. However, at the same extracellular pH, drug cytotoxicity was more pronounced in normal than in low-pH-adapted cells. The difference in doxorubicin accumulation and cytotoxicity at the same extracellular pH was found to be dependent on the difference in the transmembrane pH gradient of the two cell types. As the cellular pH gradient differs between tumour and normal tissue, this observation suggests a basis for enhancing cellular drug uptake in either tissue type. © 1999 Cancer Research Campaign

Keywords: pH, pH gradient, doxorubicin, cellular toxicity, cellular accumulation

Full Text

The Full Text of this article is available as a PDF (83.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Born R., Eichholtz-Wirth H. Effect of different physiological conditions on the action of adriamycin on Chinese hamster cells in vitro. Br J Cancer. 1981 Aug;44(2):241–246. doi: 10.1038/bjc.1981.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Brophy G. T., Sladek N. E. Influence of pH on the cytotoxic activity of chlorambucil. Biochem Pharmacol. 1983 Jan 1;32(1):79–84. doi: 10.1016/0006-2952(83)90656-1. [DOI] [PubMed] [Google Scholar]
  3. Chu G. L., Dewey W. C. The role of low intracellular or extracellular pH in sensitization to hyperthermia. Radiat Res. 1988 Apr;114(1):154–167. [PubMed] [Google Scholar]
  4. Dennis M. F., Stratford M. R., Wardman P., Watts M. E. Cellular uptake of misonidazole and analogues with acidic or basic functions. Int J Radiat Biol Relat Stud Phys Chem Med. 1985 Jun;47(6):629–643. doi: 10.1080/09553008514550871. [DOI] [PubMed] [Google Scholar]
  5. Durand R. E. Flow cytometry studies of intracellular adriamycin in multicell spheroids in vitro. Cancer Res. 1981 Sep;41(9 Pt 1):3495–3498. [PubMed] [Google Scholar]
  6. Eichholtz-Wirth H. Dependence of the cytostatic effect of adriamycin on drug concenration and exposure time in vitro. Br J Cancer. 1980 Jun;41(6):886–891. doi: 10.1038/bjc.1980.165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fellenz M. P., Gerweck L. E. Influence of extracellular pH on intracellular pH and cell energy status: relationship to hyperthermic sensitivity. Radiat Res. 1988 Nov;116(2):305–312. [PubMed] [Google Scholar]
  8. Gerweck L. E., Seetharaman K. Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Cancer Res. 1996 Mar 15;56(6):1194–1198. [PubMed] [Google Scholar]
  9. Jähde E., Glüsenkamp K. H., Klünder I., Hülser D. F., Tietze L. F., Rajewsky M. F. Hydrogen ion-mediated enhancement of cytotoxicity of bis-chloroethylating drugs in rat mammary carcinoma cells in vitro. Cancer Res. 1989 Jun 1;49(11):2965–2972. [PubMed] [Google Scholar]
  10. Kozin S. V., Gerweck L. E. Cytotoxicity of weak electrolytes after the adaptation of cells to low pH: role of the transmembrane pH gradient. Br J Cancer. 1998 May;77(10):1580–1585. doi: 10.1038/bjc.1998.260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Mikkelsen R. B., Asher C., Hicks T. Extracellular pH, transmembrane distribution and cytotoxicity of chlorambucil. Biochem Pharmacol. 1985 Jul 15;34(14):2531–2534. doi: 10.1016/0006-2952(85)90538-6. [DOI] [PubMed] [Google Scholar]
  12. Noel G., Peterson C., Trouet A., Tulkens P. Uptake and subcellular localization of daunorubicin and adriamycin in cultured fibroblasts. Eur J Cancer. 1978 Apr;14(4):363–368. doi: 10.1016/0014-2964(78)90206-2. [DOI] [PubMed] [Google Scholar]
  13. Roos A., Boron W. F. Intracellular pH. Physiol Rev. 1981 Apr;61(2):296–434. doi: 10.1152/physrev.1981.61.2.296. [DOI] [PubMed] [Google Scholar]
  14. Schwartz H. S. A fluorometric assay for daunomycin and adriamycin in animal tissues. Biochem Med. 1973 Jun;7(3):396–404. doi: 10.1016/0006-2944(73)90060-4. [DOI] [PubMed] [Google Scholar]
  15. Skarsgard L. D., Skwarchuk M. W., Vinczan A., Kristl J., Chaplin D. J. The cytotoxicity of melphalan and its relationship to pH, hypoxia and drug uptake. Anticancer Res. 1995 Jan-Feb;15(1):219–223. [PubMed] [Google Scholar]
  16. Skovsgaard T. Transport and binding of daunorubicin, adriamycin, and rubidazone in Ehrlich ascites tumour cells. Biochem Pharmacol. 1977 Feb 1;26(3):215–222. doi: 10.1016/0006-2952(77)90306-9. [DOI] [PubMed] [Google Scholar]
  17. Triton T. R., Yee G. The anticancer agent adriamycin can be actively cytotoxic without entering cells. Science. 1982 Jul 16;217(4556):248–250. doi: 10.1126/science.7089561. [DOI] [PubMed] [Google Scholar]
  18. Vaupel P., Kallinowski F., Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 1989 Dec 1;49(23):6449–6465. [PubMed] [Google Scholar]
  19. WADDELL W. J., BUTLER T. C. Calculation of intracellular pH from the distribution of 5,5-dimethyl-2,4-oxazolidinedione (DMO); application to skeletal muscle of the dog. J Clin Invest. 1959 May;38(5):720–729. doi: 10.1172/JCI103852. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES