Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Feb;79(5-6):793–801. doi: 10.1038/sj.bjc.6690127

Potentiation of anti-cancer drug activity at low intratumoral pH induced by the mitochondrial inhibitor m-iodobenzylguanidine (MIBG) and its analogue benzylguanidine (BG)

A Kuin 1, M Aalders 1, M Lamfers 1, D J van Zuidam 1, M Essers 1, J H Beijnen 1, L A Smets 1
PMCID: PMC2362690  PMID: 10070871

Abstract

Tumour-selective acidification is of potential interest for enhanced therapeutic gain of pH sensitive drugs. In this study, we investigated the feasibility of a tumour-selective reduction of the extracellular and intracellular pH and their effect on the tumour response of selected anti-cancer drugs. In an in vitro L1210 leukaemic cell model, we confirmed enhanced cytotoxicity of chlorambucil at low extracellular pH conditions. In contrast, the alkylating drugs melphalan and cisplatin, and bioreductive agents mitomycin C and its derivative EO9, required low intracellular pH conditions for enhanced activation. Furthermore, a strong and pH-independent synergism was observed between the pH-equilibrating drug nigericin and melphalan, of which the mechanism is unclear. In radiation-induced fibrosarcoma (RIF-1) tumour-bearing mice, the extracellular pH was reduced by the mitochondrial inhibitor m-iodobenzylguanidine (MIBG) or its analogue benzylguanidine (BG) plus glucose. To simultaneously reduce the intracellular pH, MIBG plus glucose were combined with the ionophore nigericin or the Na+/H+ exchanger inhibitor amiloride and the Na+-dependent HCO3/Clexchanger inhibitor 4,4′-diisothiocyanostilbene-2,2′-disulphonic acid (DIDS). Biochemical studies confirmed an effective reduction of the extracellular pH to approximately 6.2, and anti-tumour responses to the interventions indicated a simultaneous reduction of the intracellular pH below 6.6 for at least 3 h. Combined reduction of extra- and intracellular tumour pH with melphalan increased the tumour regrowth time to 200% of the pretreatment volume from 5.7 ± 0.6 days for melphalan alone to 8.1 ± 0.7 days with pH manipulation (P< 0.05). Mitomycin C related tumour growth delay was enhanced by the combined interventions from 3.8 ± 0.5 to 5.2 ± 0.5 days (P< 0.05), but only in tumours of relatively large sizes. The interventions were non-toxic alone or in combination with the anti-cancer drugs and did not affect melphalan biodistribution. In conclusion, we have developed non-toxic interventions for sustained and selective reduction of extra- and intracellular tumour pH which potentiated the tumour responses to selected anti-cancer drugs. 1999 Cancer Research Campaign

Keywords: tumour pH, mitochondrial inhibition, intracellular pH, anti-cancer drugs

Full Text

The Full Text of this article is available as a PDF (117.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alabaster O., Woods T., Ortiz-Sanchez V., Jahangeer S. Influence of microenvironmental pH on adriamycin resistance. Cancer Res. 1989 Oct 15;49(20):5638–5643. [PubMed] [Google Scholar]
  2. Atema A., Buurman K. J., Noteboom E., Smets L. A. Potentiation of DNA-adduct formation and cytotoxicity of platinum-containing drugs by low pH. Int J Cancer. 1993 Apr 22;54(1):166–172. doi: 10.1002/ijc.2910540126. [DOI] [PubMed] [Google Scholar]
  3. Begleiter A., Leith M. K. Role of NAD(P)H:(quinone acceptor) oxidoreductase (DT-diaphorase) in activation of mitomycin C under acidic conditions. Mol Pharmacol. 1993 Jul;44(1):210–215. [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  5. Dirix L. Y., Tonnesen F., Cassidy J., Epelbaum R., ten Bokkel Huinink W. W., Pavlidis N., Sorio R., Gamucci T., Wolff I., Te Velde A. EO9 phase II study in advanced breast, gastric, pancreatic and colorectal carcinoma by the EORTC Early Clinical Studies Group. Eur J Cancer. 1996 Oct;32A(11):2019–2022. doi: 10.1016/0959-8049(96)00226-2. [DOI] [PubMed] [Google Scholar]
  6. Evelhoch J. L., Sapareto S. A., Jick D. E., Ackerman J. J. In vivo metabolic effects of hyperglycemia in murine radiation-induced fibrosarcoma: a 31P NMR investigation. Proc Natl Acad Sci U S A. 1984 Oct;81(20):6496–6500. doi: 10.1073/pnas.81.20.6496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gabr A., Kuin A., Aalders M., El-Gawly H., Smets L. A. Cellular pharmacokinetics and cytotoxicity of camptothecin and topotecan at normal and acidic pH. Cancer Res. 1997 Nov 1;57(21):4811–4816. [PubMed] [Google Scholar]
  8. Gibson N. W., Siegel D., Ross D. Mitomycin C. Cancer Chemother Biol Response Modif. 1992;13:59–68. [PubMed] [Google Scholar]
  9. Hwang Y. C., Kim S. G., Evelhoch J. L., Seyedsadr M., Ackerman J. J. Modulation of murine radiation-induced fibrosarcoma-1 tumor metabolism and blood flow in situ via glucose and mannitol administration monitored by 31P and 2H nuclear magnetic resonance spectroscopy. Cancer Res. 1991 Jun 15;51(12):3108–3118. [PubMed] [Google Scholar]
  10. Jähde E., Glüsenkamp K. H., Klünder I., Hülser D. F., Tietze L. F., Rajewsky M. F. Hydrogen ion-mediated enhancement of cytotoxicity of bis-chloroethylating drugs in rat mammary carcinoma cells in vitro. Cancer Res. 1989 Jun 1;49(11):2965–2972. [PubMed] [Google Scholar]
  11. Jähde E., Rajewsky M. F. Tumor-selective modification of cellular microenvironment in vivo: effect of glucose infusion on the pH in normal and malignant rat tissues. Cancer Res. 1982 Apr;42(4):1505–1512. [PubMed] [Google Scholar]
  12. Klaase J. M., Kroon B. B., Beijnen J. H., van Slooten G. W., van Dongen J. A. Melphalan tissue concentrations in patients treated with regional isolated perfusion for melanoma of the lower limb. Br J Cancer. 1994 Jul;70(1):151–153. doi: 10.1038/bjc.1994.266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kuin A., Aalders M., van der Valk M. A., Frey A., Schmidt H. H., Smets L. A. Renal toxicity of the neuron-blocking and mitochondriotropic agent m-iodobenzylguanidine. Cancer Chemother Pharmacol. 1998;42(1):37–45. doi: 10.1007/s002800050782. [DOI] [PubMed] [Google Scholar]
  14. Kuin A., Smets L., Volk T., Paans A., Adams G., Atema A., Jähde E., Maas A., Rajewsky M. F., Visser G. Reduction of intratumoral pH by the mitochondrial inhibitor m-iodobenzylguanidine and moderate hyperglycemia. Cancer Res. 1994 Jul 15;54(14):3785–3792. [PubMed] [Google Scholar]
  15. Lee F. Y., Coe P., Workman P. Pharmacokinetic basis for the comparative antitumour activity and toxicity of chlorambucil, phenylacetic acid mustard and beta, beta-difluorochlorambucil (CB 7103) in mice. Cancer Chemother Pharmacol. 1986;17(1):21–29. doi: 10.1007/BF00299861. [DOI] [PubMed] [Google Scholar]
  16. Loesberg C., Van Rooij H., Nooijen W. J., Meijer A. J., Smets L. A. Impaired mitochondrial respiration and stimulated glycolysis by m-iodobenzylguanidine (MIBG). Int J Cancer. 1990 Aug 15;46(2):276–281. doi: 10.1002/ijc.2910460223. [DOI] [PubMed] [Google Scholar]
  17. Mansour T. E. Phosphofructokinase. Curr Top Cell Regul. 1972;5:1–46. [PubMed] [Google Scholar]
  18. Mikkelsen R. B., Asher C., Hicks T. Extracellular pH, transmembrane distribution and cytotoxicity of chlorambucil. Biochem Pharmacol. 1985 Jul 15;34(14):2531–2534. doi: 10.1016/0006-2952(85)90538-6. [DOI] [PubMed] [Google Scholar]
  19. Newell K. J., Tannock I. F. Reduction of intracellular pH as a possible mechanism for killing cells in acidic regions of solid tumors: effects of carbonylcyanide-3-chlorophenylhydrazone. Cancer Res. 1989 Aug 15;49(16):4477–4482. [PubMed] [Google Scholar]
  20. Newell K., Wood P., Stratford I., Tannock I. Effects of agents which inhibit the regulation of intracellular pH on murine solid tumours. Br J Cancer. 1992 Aug;66(2):311–317. doi: 10.1038/bjc.1992.262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Nishiyama M., Suzuki K., Kumazaki T., Yamamoto W., Toge T., Okamura T., Kurisu K. Molecular targeting of mitomycin C chemotherapy. Int J Cancer. 1997 Aug 7;72(4):649–656. doi: 10.1002/(sici)1097-0215(19970807)72:4<649::aid-ijc17>3.0.co;2-6. [DOI] [PubMed] [Google Scholar]
  22. Parkins C. S., Chadwick J. A., Chaplin D. J. Enhancement of chlorambucil cytotoxicity by combination with flavone acetic acid in a murine tumour. Anticancer Res. 1994 Jul-Aug;14(4A):1603–1608. [PubMed] [Google Scholar]
  23. Phillips R. M., Hulbert P. B., Bibby M. C., Sleigh N. R., Double J. A. In vitro activity of the novel indoloquinone EO-9 and the influence of pH on cytotoxicity. Br J Cancer. 1992 Mar;65(3):359–364. doi: 10.1038/bjc.1992.73. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Rotin D., Wan P., Grinstein S., Tannock I. Cytotoxicity of compounds that interfere with the regulation of intracellular pH: a potential new class of anticancer drugs. Cancer Res. 1987 Mar 15;47(6):1497–1504. [PubMed] [Google Scholar]
  25. Skarsgard L. D., Chaplin D. J., Wilson D. J., Skwarchuk M. W., Vinczan A., Kristl J. The effect of hypoxia and low pH on the cytotoxicity of chlorambucil. Int J Radiat Oncol Biol Phys. 1992;22(4):737–741. doi: 10.1016/0360-3016(92)90514-i. [DOI] [PubMed] [Google Scholar]
  26. Song C. W., Kim G. E., Lyons J. C., Makepeace C. M., Griffin R. J., Rao G. H., Cragoe E. J., Jr Thermosensitization by increasing intracellular acidity with amiloride and its analogs. Int J Radiat Oncol Biol Phys. 1994 Dec 1;30(5):1161–1169. doi: 10.1016/0360-3016(94)90324-7. [DOI] [PubMed] [Google Scholar]
  27. Thistlethwaite A. J., Alexander G. A., Moylan D. J., 3rd, Leeper D. B. Modification of human tumor pH by elevation of blood glucose. Int J Radiat Oncol Biol Phys. 1987 Apr;13(4):603–610. doi: 10.1016/0360-3016(87)90078-2. [DOI] [PubMed] [Google Scholar]
  28. Tietze L. F., Neumann M., Möllers T., Fischer R., Glüsenkamp K. H., Rajewsky M. F., Jähde E. Proton-mediated liberation of aldophosphamide from a nontoxic prodrug: a strategy for tumor-selective activation of cytocidal drugs. Cancer Res. 1989 Aug 1;49(15):4179–4184. [PubMed] [Google Scholar]
  29. Twentyman P. R., Brown J. M., Gray J. W., Franko A. J., Scoles M. A., Kallman R. F. A new mouse tumor model system (RIF-1) for comparison of end-point studies. J Natl Cancer Inst. 1980 Mar;64(3):595–604. [PubMed] [Google Scholar]
  30. Van den Berg J. D., Smets L. A., Rutgers M., Grummels A., Fokkens R., Jonkergouw P., van Rooij H. Chemical characterization and comparative cellular effects of meta-iodobenzyl guanidine and benzyl guanidine. Cancer Chemother Pharmacol. 1997;40(2):131–137. doi: 10.1007/s002800050637. [DOI] [PubMed] [Google Scholar]
  31. Vaupel P., Kallinowski F., Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 1989 Dec 1;49(23):6449–6465. [PubMed] [Google Scholar]
  32. Volk T., Jähde E., Fortmeyer H. P., Glüsenkamp K. H., Rajewsky M. F. pH in human tumour xenografts: effect of intravenous administration of glucose. Br J Cancer. 1993 Sep;68(3):492–500. doi: 10.1038/bjc.1993.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wike-Hooley J. L., Haveman J., Reinhold H. S. The relevance of tumour pH to the treatment of malignant disease. Radiother Oncol. 1984 Dec;2(4):343–366. doi: 10.1016/s0167-8140(84)80077-8. [DOI] [PubMed] [Google Scholar]
  34. Wood P. J., Sansom J. M., Newell K., Tannock I. F., Stratford I. J. Reduction of tumour intracellular pH and enhancement of melphalan cytotoxicity by the ionophore Nigericin. Int J Cancer. 1995 Jan 17;60(2):264–268. doi: 10.1002/ijc.2910600222. [DOI] [PubMed] [Google Scholar]
  35. Yamagata M., Tannock I. F. The chronic administration of drugs that inhibit the regulation of intracellular pH: in vitro and anti-tumour effects. Br J Cancer. 1996 Jun;73(11):1328–1334. doi: 10.1038/bjc.1996.254. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES