Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Mar;79(9-10):1340–1346. doi: 10.1038/sj.bjc.6690216

The flavonoid galangin is an inhibitor of CYP1A1 activity and an agonist/antagonist of the aryl hydrocarbon receptor

H P Ciolino 1, G C Yeh 1
PMCID: PMC2362711  PMID: 10188874

Abstract

The effect of the dietary flavonoid galangin on the metabolism of 7,12-dimethylbenz[a]anthracene (DMBA), the activity of cytochrome P 450 1A1 (CYP1A1), and the expression of CYP1A1 in MCF-7 human breast carcinoma cells was investigated. Galangin inhibited the catabolic breakdown of DMBA, as measured by thin-layer chromatography, in a dose-dependent manner. Galangin also inhibited the formation of DMBA-DNA adducts, and prevented DMBA-induced inhibition of cell growth. Galangin caused a potent, dose-dependent inhibition of CYP1A1 activity, as measured by ethoxyresorufin-O-deethylase activity, in intact cells and in microsomes isolated from DMBA-treated cells. Analysis of the inhibition kinetics by double-reciprocal plot demonstrated that galangin inhibited CYP1A1 activity in a non-competitive manner. Galangin caused an increase in the level of CYP1A1 mRNA, indicating that it may be an agonist of the aryl hydrocarbon receptor, but it inhibited the induction of CYP1A1 mRNA by DMBA or by 2,3,5,7-tetrachlorodibenzo-p-dioxin (TCDD). Galangin also inhibited the DMBA- or TCDD-induced transcription of a reporter vector containing the CYP1A1 promoter. Thus, galangin is a potent inhibitor of DMBA metabolism and an agonist/antagonist of the AhR, and may prove to be an effective chemopreventive agent. © 1999 Cancer Research Campaign

Keywords: galangin, flavonoid, DMBA, CYP1A1, EROD

Full Text

The Full Text of this article is available as a PDF (151.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  2. Buening M. K., Chang R. L., Huang M. T., Fortner J. G., Wood A. W., Conney A. H. Activation and inhibition of benzo(a)pyrene and aflatoxin B1 metabolism in human liver microsomes by naturally occurring flavonoids. Cancer Res. 1981 Jan;41(1):67–72. [PubMed] [Google Scholar]
  3. Canivenc-Lavier M. C., Vernevaut M. F., Totis M., Siess M. H., Magdalou J., Suschetet M. Comparative effects of flavonoids and model inducers on drug-metabolizing enzymes in rat liver. Toxicology. 1996 Nov 15;114(1):19–27. doi: 10.1016/s0300-483x(96)03412-9. [DOI] [PubMed] [Google Scholar]
  4. Christou M., Savas U., Spink D. C., Gierthy J. F., Jefcoate C. R. Co-expression of human CYP1A1 and a human analog of cytochrome P450-EF in response to 2,3,7,8-tetrachloro-dibenzo-p-dioxin in the human mammary carcinoma-derived MCF-7 cells. Carcinogenesis. 1994 Apr;15(4):725–732. doi: 10.1093/carcin/15.4.725. [DOI] [PubMed] [Google Scholar]
  5. Ciolino H. P., Daschner P. J., Wang T. T., Yeh G. C. Effect of curcumin on the aryl hydrocarbon receptor and cytochrome P450 1A1 in MCF-7 human breast carcinoma cells. Biochem Pharmacol. 1998 Jul 15;56(2):197–206. doi: 10.1016/s0006-2952(98)00143-9. [DOI] [PubMed] [Google Scholar]
  6. Critchfield J. W., Welsh C. J., Phang J. M., Yeh G. C. Modulation of adriamycin accumulation and efflux by flavonoids in HCT-15 colon cells. Activation of P-glycoprotein as a putative mechanism. Biochem Pharmacol. 1994 Oct 7;48(7):1437–1445. doi: 10.1016/0006-2952(94)90568-1. [DOI] [PubMed] [Google Scholar]
  7. Csokay B., Prajda N., Weber G., Olah E. Molecular mechanisms in the antiproliferative action of quercetin. Life Sci. 1997;60(24):2157–2163. doi: 10.1016/s0024-3205(97)00230-0. [DOI] [PubMed] [Google Scholar]
  8. Dipple A. DNA adducts of chemical carcinogens. Carcinogenesis. 1995 Mar;16(3):437–441. doi: 10.1093/carcin/16.3.437. [DOI] [PubMed] [Google Scholar]
  9. Döhr O., Vogel C., Abel J. Different response of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-sensitive genes in human breast cancer MCF-7 and MDA-MB 231 cells. Arch Biochem Biophys. 1995 Aug 20;321(2):405–412. doi: 10.1006/abbi.1995.1411. [DOI] [PubMed] [Google Scholar]
  10. Eaton E. A., Walle U. K., Lewis A. J., Hudson T., Wilson A. A., Walle T. Flavonoids, potent inhibitors of the human P-form phenolsulfotransferase. Potential role in drug metabolism and chemoprevention. Drug Metab Dispos. 1996 Feb;24(2):232–237. [PubMed] [Google Scholar]
  11. Formica J. V., Regelson W. Review of the biology of Quercetin and related bioflavonoids. Food Chem Toxicol. 1995 Dec;33(12):1061–1080. doi: 10.1016/0278-6915(95)00077-1. [DOI] [PubMed] [Google Scholar]
  12. HUGGINS C., GRAND L. C., BRILLANTES F. P. Mammary cancer induced by a single feeding of polymucular hydrocarbons, and its suppression. Nature. 1961 Jan 21;189:204–207. doi: 10.1038/189204a0. [DOI] [PubMed] [Google Scholar]
  13. Hollman P. C., Katan M. B. Absorption, metabolism and health effects of dietary flavonoids in man. Biomed Pharmacother. 1997;51(8):305–310. doi: 10.1016/s0753-3322(97)88045-6. [DOI] [PubMed] [Google Scholar]
  14. Hollman P. C., Katan M. B. Bioavailability and health effects of dietary flavonols in man. Arch Toxicol Suppl. 1998;20:237–248. doi: 10.1007/978-3-642-46856-8_21. [DOI] [PubMed] [Google Scholar]
  15. Hollman P. C., van Trijp J. M., Mengelers M. J., de Vries J. H., Katan M. B. Bioavailability of the dietary antioxidant flavonol quercetin in man. Cancer Lett. 1997 Mar 19;114(1-2):139–140. doi: 10.1016/s0304-3835(97)04644-2. [DOI] [PubMed] [Google Scholar]
  16. Jellinck P. H., Forkert P. G., Riddick D. S., Okey A. B., Michnovicz J. J., Bradlow H. L. Ah receptor binding properties of indole carbinols and induction of hepatic estradiol hydroxylation. Biochem Pharmacol. 1993 Mar 9;45(5):1129–1136. doi: 10.1016/0006-2952(93)90258-x. [DOI] [PubMed] [Google Scholar]
  17. Kao Y. C., Zhou C., Sherman M., Laughton C. A., Chen S. Molecular basis of the inhibition of human aromatase (estrogen synthetase) by flavone and isoflavone phytoestrogens: A site-directed mutagenesis study. Environ Health Perspect. 1998 Feb;106(2):85–92. doi: 10.1289/ehp.9810685. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kennedy S. W., Jones S. P. Simultaneous measurement of cytochrome P4501A catalytic activity and total protein concentration with a fluorescence plate reader. Anal Biochem. 1994 Oct;222(1):217–223. doi: 10.1006/abio.1994.1476. [DOI] [PubMed] [Google Scholar]
  19. Kono Y., Kobayashi K., Tagawa S., Adachi K., Ueda A., Sawa Y., Shibata H. Antioxidant activity of polyphenolics in diets. Rate constants of reactions of chlorogenic acid and caffeic acid with reactive species of oxygen and nitrogen. Biochim Biophys Acta. 1997 Jun 6;1335(3):335–342. doi: 10.1016/s0304-4165(96)00151-1. [DOI] [PubMed] [Google Scholar]
  20. Kühnau J. The flavonoids. A class of semi-essential food components: their role in human nutrition. World Rev Nutr Diet. 1976;24:117–191. [PubMed] [Google Scholar]
  21. Lamartiniere C. A., Moore J. B., Brown N. M., Thompson R., Hardin M. J., Barnes S. Genistein suppresses mammary cancer in rats. Carcinogenesis. 1995 Nov;16(11):2833–2840. doi: 10.1093/carcin/16.11.2833. [DOI] [PubMed] [Google Scholar]
  22. Larsen M. C., Angus W. G., Brake P. B., Eltom S. E., Sukow K. A., Jefcoate C. R. Characterization of CYP1B1 and CYP1A1 expression in human mammary epithelial cells: role of the aryl hydrocarbon receptor in polycyclic aromatic hydrocarbon metabolism. Cancer Res. 1998 Jun 1;58(11):2366–2374. [PubMed] [Google Scholar]
  23. Manach C., Morand C., Texier O., Favier M. L., Agullo G., Demigné C., Régérat F., Rémésy C. Quercetin metabolites in plasma of rats fed diets containing rutin or quercetin. J Nutr. 1995 Jul;125(7):1911–1922. doi: 10.1093/jn/125.7.1911. [DOI] [PubMed] [Google Scholar]
  24. Miller S. A., Dykes D. D., Polesky H. F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988 Feb 11;16(3):1215–1215. doi: 10.1093/nar/16.3.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mirzoeva O. K., Calder P. C. The effect of propolis and its components on eicosanoid production during the inflammatory response. Prostaglandins Leukot Essent Fatty Acids. 1996 Dec;55(6):441–449. doi: 10.1016/s0952-3278(96)90129-5. [DOI] [PubMed] [Google Scholar]
  26. Moon J. Y., Lee D. W., Park K. H. Inhibition of 7-ethoxycoumarin O-deethylase activity in rat liver microsomes by naturally occurring flavonoids: structure-activity relationships. Xenobiotica. 1998 Feb;28(2):117–126. doi: 10.1080/004982598239623. [DOI] [PubMed] [Google Scholar]
  27. Moore M., Wang X., Lu Y. F., Wormke M., Craig A., Gerlach J. H., Burghardt R., Barhoumi R., Safe S. Benzo[a]pyrene-resistant MCF-7 human breast cancer cells. A unique aryl hydrocarbon-nonresponsive clone. J Biol Chem. 1994 Apr 22;269(16):11751–11759. [PubMed] [Google Scholar]
  28. Morton M. S., Chan P. S., Cheng C., Blacklock N., Matos-Ferreira A., Abranches-Monteiro L., Correia R., Lloyd S., Griffiths K. Lignans and isoflavonoids in plasma and prostatic fluid in men: samples from Portugal, Hong Kong, and the United Kingdom. Prostate. 1997 Jul 1;32(2):122–128. doi: 10.1002/(sici)1097-0045(19970701)32:2<122::aid-pros7>3.0.co;2-o. [DOI] [PubMed] [Google Scholar]
  29. Noda Y., Anzai K., Mori A., Kohno M., Shinmei M., Packer L. Hydroxyl and superoxide anion radical scavenging activities of natural source antioxidants using the computerized JES-FR30 ESR spectrometer system. Biochem Mol Biol Int. 1997 Jun;42(1):35–44. doi: 10.1080/15216549700202411. [DOI] [PubMed] [Google Scholar]
  30. Rosenthal N. Identification of regulatory elements of cloned genes with functional assays. Methods Enzymol. 1987;152:704–720. doi: 10.1016/0076-6879(87)52075-4. [DOI] [PubMed] [Google Scholar]
  31. Rowlands J. C., Gustafsson J. A. Aryl hydrocarbon receptor-mediated signal transduction. Crit Rev Toxicol. 1997 Mar;27(2):109–134. doi: 10.3109/10408449709021615. [DOI] [PubMed] [Google Scholar]
  32. Rubinstein L. V., Shoemaker R. H., Paull K. D., Simon R. M., Tosini S., Skehan P., Scudiero D. A., Monks A., Boyd M. R. Comparison of in vitro anticancer-drug-screening data generated with a tetrazolium assay versus a protein assay against a diverse panel of human tumor cell lines. J Natl Cancer Inst. 1990 Jul 4;82(13):1113–1118. doi: 10.1093/jnci/82.13.1113. [DOI] [PubMed] [Google Scholar]
  33. Shimada T., Gillam E. M., Sutter T. R., Strickland P. T., Guengerich F. P., Yamazaki H. Oxidation of xenobiotics by recombinant human cytochrome P450 1B1. Drug Metab Dispos. 1997 May;25(5):617–622. [PubMed] [Google Scholar]
  34. Siess M. H., Leclerc J., Canivenc-Lavier M. C., Rat P., Suschetet M. Heterogenous effects of natural flavonoids on monooxygenase activities in human and rat liver microsomes. Toxicol Appl Pharmacol. 1995 Jan;130(1):73–78. doi: 10.1006/taap.1995.1010. [DOI] [PubMed] [Google Scholar]
  35. So F. V., Guthrie N., Chambers A. F., Carroll K. K. Inhibition of proliferation of estrogen receptor-positive MCF-7 human breast cancer cells by flavonoids in the presence and absence of excess estrogen. Cancer Lett. 1997 Jan 30;112(2):127–133. doi: 10.1016/s0304-3835(96)04557-0. [DOI] [PubMed] [Google Scholar]
  36. So F. V., Guthrie N., Chambers A. F., Moussa M., Carroll K. K. Inhibition of human breast cancer cell proliferation and delay of mammary tumorigenesis by flavonoids and citrus juices. Nutr Cancer. 1996;26(2):167–181. doi: 10.1080/01635589609514473. [DOI] [PubMed] [Google Scholar]
  37. Sogawa K., Fujisawa-Sehara A., Yamane M., Fujii-Kuriyama Y. Location of regulatory elements responsible for drug induction in the rat cytochrome P-450c gene. Proc Natl Acad Sci U S A. 1986 Nov;83(21):8044–8048. doi: 10.1073/pnas.83.21.8044. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Sousa R. L., Marletta M. A. Inhibition of cytochrome P-450 activity in rat liver microsomes by the naturally occurring flavonoid, quercetin. Arch Biochem Biophys. 1985 Jul;240(1):345–357. doi: 10.1016/0003-9861(85)90040-2. [DOI] [PubMed] [Google Scholar]
  39. Steinmetz K. A., Potter J. D. Vegetables, fruit, and cancer prevention: a review. J Am Diet Assoc. 1996 Oct;96(10):1027–1039. doi: 10.1016/S0002-8223(96)00273-8. [DOI] [PubMed] [Google Scholar]
  40. Tsyrlov I. B., Mikhailenko V. M., Gelboin H. V. Isozyme- and species-specific susceptibility of cDNA-expressed CYP1A P-450s to different flavonoids. Biochim Biophys Acta. 1994 Apr 13;1205(2):325–335. doi: 10.1016/0167-4838(94)90252-6. [DOI] [PubMed] [Google Scholar]
  41. Verma A. K., Johnson J. A., Gould M. N., Tanner M. A. Inhibition of 7,12-dimethylbenz(a)anthracene- and N-nitrosomethylurea-induced rat mammary cancer by dietary flavonol quercetin. Cancer Res. 1988 Oct 15;48(20):5754–5758. [PubMed] [Google Scholar]
  42. Wang X., Thomsen J. S., Santostefano M., Rosengren R., Safe S., Perdew G. H. Comparative properties of the nuclear aryl hydrocarbon (Ah) receptor complex from several human cell lines. Eur J Pharmacol. 1995 Oct 6;293(3):191–205. doi: 10.1016/s0922-4106(05)80044-6. [DOI] [PubMed] [Google Scholar]
  43. Wattenberg L. W. Chemoprevention of cancer. Cancer Res. 1985 Jan;45(1):1–8. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES