Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Apr;79(11-12):1859–1863. doi: 10.1038/sj.bjc.6690296

Reduced bone mineral density in young adults following cure of acute lympblastic leukaemia in childhood

B M D Brennan 1, A Rahim 3, J A Adams 2, O B Eden 1, S M Shalet 3
PMCID: PMC2362787  PMID: 10206305

Abstract

Bone mineral density (BMD), serum osteocalcin and type I collagen C-telopeptide (ICTP) were assessed in a cohort of 31 (16 males) adults who had received cranial irradiation in childhood as part of their treatment for acute lymphoblastic leukaemia (ALL). Markers of bone turnover were compared with those of 35 age and body mass index (BMI) matched young adults (18 male). Growth hormone status had previously been determined using an insulin tolerance test and arginine stimulation test. Eight patients were classified as severe growth hormone deficiency (group 1), 12 patients as growth hormone insufficient (group 2) and 11 patients as normal (group 3). Vertebral trabecular BMD, lumbar spine and femoral neck integral BMD and forearm cortical bone mineral content (BMC) was measured 17.8 (6.8–28.6) years after cranial irradiation and was expressed as Z (standard deviation) scores. There was a significant reduction in vertebral trabecular BMD (median Z score –1.25, P < 0.001), in lumbar spine integral BMD (median Z score –0.74, P = 0.001), in forearm cortical BMC (median Z score –1.35, P < 0.001), and less so in femoral neck integral BMD (median Z score –0.43, P = 0.03). There was no difference among the growth hormone status groups for the following BMD measurements: vertebral trabecular BMD, lumbar spine integral BMD or femoral neck integral BMD (P = 0.8, P = 0.96 and P = 0.4 respectively). There was only a marginal significant difference for BMD at the wrist between growth hormone status groups (P = 0.04). There was no correlation between the BMD measurements with time since or age at diagnosis and no difference in markers of bone turnover between patients and controls; median serum osteocalcin 13.3 and 12.0 ng ml (P = 0.7), respectively, and for ICTP 5.0 and 4.9 μg L (P = 0.67) respectively. In conclusion, there is a highly significant reduction in BMD in young adults following treatment for ALL in childhood. The reduction in BMD affects both trabecular and cortical bone but did not seem to be related to time since diagnosis, age at diagnosis, or current growth hormone status. Possible explanations include a direct effect of chemotherapy, steroids or both on bone during childhood and hence an effect on the accretion of bone mass. In view of the risk of fractures in patients with osteopenia, adults treated for ALL in childhood may be at an increased risk of bone fractures later in life irrespective of the underlying cause of the osteopenia and thus intervention should be considered. © 1999 Cancer Research Campaign

Keywords: bone mineral density, acute lymphoblastic leukaemia

Full Text

The Full Text of this article is available as a PDF (85.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baylink D. J. Glucocorticoid-induced osteoporosis. N Engl J Med. 1983 Aug 4;309(5):306–308. doi: 10.1056/NEJM198308043090509. [DOI] [PubMed] [Google Scholar]
  2. Block J. E., Smith R., Glueer C. C., Steiger P., Ettinger B., Genant H. K. Models of spinal trabecular bone loss as determined by quantitative computed tomography. J Bone Miner Res. 1989 Apr;4(2):249–257. doi: 10.1002/jbmr.5650040218. [DOI] [PubMed] [Google Scholar]
  3. Brennan B. M., Rahim A., Mackie E. M., Eden O. B., Shalet S. M. Growth hormone status in adults treated for acute lymphoblastic leukaemia in childhood. Clin Endocrinol (Oxf) 1998 Jun;48(6):777–783. doi: 10.1046/j.1365-2265.1998.00438.x. [DOI] [PubMed] [Google Scholar]
  4. Cann C. E., Genant H. K. Precise measurement of vertebral mineral content using computed tomography. J Comput Assist Tomogr. 1980 Aug;4(4):493–500. doi: 10.1097/00004728-198008000-00018. [DOI] [PubMed] [Google Scholar]
  5. Chessells J. M., Bailey C., Richards S. M. Intensification of treatment and survival in all children with lymphoblastic leukaemia: results of UK Medical Research Council trial UKALL X. Medical Research Council Working Party on Childhood Leukaemia. Lancet. 1995 Jan 21;345(8943):143–148. doi: 10.1016/s0140-6736(95)90164-7. [DOI] [PubMed] [Google Scholar]
  6. Cullum I. D., Ell P. J., Ryder J. P. X-ray dual-photon absorptiometry: a new method for the measurement of bone density. Br J Radiol. 1989 Jul;62(739):587–592. doi: 10.1259/0007-1285-62-739-587. [DOI] [PubMed] [Google Scholar]
  7. Cummings S. R., Black D. M., Nevitt M. C., Browner W., Cauley J., Ensrud K., Genant H. K., Palermo L., Scott J., Vogt T. M. Bone density at various sites for prediction of hip fractures. The Study of Osteoporotic Fractures Research Group. Lancet. 1993 Jan 9;341(8837):72–75. doi: 10.1016/0140-6736(93)92555-8. [DOI] [PubMed] [Google Scholar]
  8. Faulkner K. G., Glüer C. C., Grampp S., Genant H. K. Cross-calibration of liquid and solid QCT calibration standards: corrections to the UCSF normative data. Osteoporos Int. 1993 Jan;3(1):36–42. doi: 10.1007/BF01623175. [DOI] [PubMed] [Google Scholar]
  9. Friedlaender G. E., Tross R. B., Doganis A. C., Kirkwood J. M., Baron R. Effects of chemotherapeutic agents on bone. I. Short-term methotrexate and doxorubicin (adriamycin) treatment in a rat model. J Bone Joint Surg Am. 1984 Apr;66(4):602–607. [PubMed] [Google Scholar]
  10. Gilsanz V., Carlson M. E., Roe T. F., Ortega J. A. Osteoporosis after cranial irradiation for acute lymphoblastic leukemia. J Pediatr. 1990 Aug;117(2 Pt 1):238–244. doi: 10.1016/s0022-3476(05)80536-0. [DOI] [PubMed] [Google Scholar]
  11. Halton J. M., Atkinson S. A., Fraher L., Webber C., Gill G. J., Dawson S., Barr R. D. Altered mineral metabolism and bone mass in children during treatment for acute lymphoblastic leukemia. J Bone Miner Res. 1996 Nov;11(11):1774–1783. doi: 10.1002/jbmr.5650111122. [DOI] [PubMed] [Google Scholar]
  12. Holmes S. J., Economou G., Whitehouse R. W., Adams J. E., Shalet S. M. Reduced bone mineral density in patients with adult onset growth hormone deficiency. J Clin Endocrinol Metab. 1994 Mar;78(3):669–674. doi: 10.1210/jcem.78.3.8126140. [DOI] [PubMed] [Google Scholar]
  13. Holmes S. J., Whitehouse R. W., Clark S. T., Crowther D. C., Adams J. E., Shalet S. M. Reduced bone mineral density in men following chemotherapy for Hodgkin's disease. Br J Cancer. 1994 Aug;70(2):371–375. doi: 10.1038/bjc.1994.308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kaufman J. M., Taelman P., Vermeulen A., Vandeweghe M. Bone mineral status in growth hormone-deficient males with isolated and multiple pituitary deficiencies of childhood onset. J Clin Endocrinol Metab. 1992 Jan;74(1):118–123. doi: 10.1210/jcem.74.1.1727808. [DOI] [PubMed] [Google Scholar]
  15. Kreuser E. D., Felsenberg D., Behles C., Seibt-Jung H., Mielcarek M., Diehl V., Dahmen E., Thiel E. Long-term gonadal dysfunction and its impact on bone mineralization in patients following COPP/ABVD chemotherapy for Hodgkin's disease. Ann Oncol. 1992 Sep;3 (Suppl 4):105–110. doi: 10.1093/annonc/3.suppl_4.s105. [DOI] [PubMed] [Google Scholar]
  16. Lukert B. P., Raisz L. G. Glucocorticoid-induced osteoporosis: pathogenesis and management. Ann Intern Med. 1990 Mar 1;112(5):352–364. doi: 10.7326/0003-4819-112-5-352. [DOI] [PubMed] [Google Scholar]
  17. Nussey S. S., Hyer S. L., Brada M., Leiper A. D., Pazianas M. Bone mineralization after treatment of growth hormone deficiency in survivors of childhood malignancy. Acta Paediatr Suppl. 1994 Apr;399:9–15. doi: 10.1111/j.1651-2227.1994.tb13276.x. [DOI] [PubMed] [Google Scholar]
  18. O'Halloran D. J., Tsatsoulis A., Whitehouse R. W., Holmes S. J., Adams J. E., Shalet S. M. Increased bone density after recombinant human growth hormone (GH) therapy in adults with isolated GH deficiency. J Clin Endocrinol Metab. 1993 May;76(5):1344–1348. doi: 10.1210/jcem.76.5.8496328. [DOI] [PubMed] [Google Scholar]
  19. Parfitt A. M. Interpretation of bone densitometry measurements: disadvantages of a percentage scale and a discussion of some alternatives. J Bone Miner Res. 1990 Jun;5(6):537–540. doi: 10.1002/jbmr.5650050602. [DOI] [PubMed] [Google Scholar]
  20. Peretz A., Praet J. P., Bosson D., Rozenberg S., Bourdoux P. Serum osteocalcin in the assessment of corticosteroid induced osteoporosis. Effect of long and short term corticosteroid treatment. J Rheumatol. 1989 Mar;16(3):363–367. [PubMed] [Google Scholar]
  21. Prentice A., Parsons T. J., Cole T. J. Uncritical use of bone mineral density in absorptiometry may lead to size-related artifacts in the identification of bone mineral determinants. Am J Clin Nutr. 1994 Dec;60(6):837–842. doi: 10.1093/ajcn/60.6.837. [DOI] [PubMed] [Google Scholar]
  22. Reid I. R., Grey A. B. Corticosteroid osteoporosis. Baillieres Clin Rheumatol. 1993 Oct;7(3):573–587. doi: 10.1016/s0950-3579(05)80080-9. [DOI] [PubMed] [Google Scholar]
  23. Rosén T., Hansson T., Granhed H., Szucs J., Bengtsson B. A. Reduced bone mineral content in adult patients with growth hormone deficiency. Acta Endocrinol (Copenh) 1993 Sep;129(3):201–206. doi: 10.1530/acta.0.1290201. [DOI] [PubMed] [Google Scholar]
  24. Stepán J. J., Lachman M., Zverina J., Pacovský V., Baylink D. J. Castrated men exhibit bone loss: effect of calcitonin treatment on biochemical indices of bone remodeling. J Clin Endocrinol Metab. 1989 Sep;69(3):523–527. doi: 10.1210/jcem-69-3-523. [DOI] [PubMed] [Google Scholar]
  25. Tanner J. M., Whitehouse R. H., Takaishi M. Standards from birth to maturity for height, weight, height velocity, and weight velocity: British children, 1965. I. Arch Dis Child. 1966 Oct;41(219):454–471. doi: 10.1136/adc.41.219.454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Tanner J. M., Whitehouse R. H., Takaishi M. Standards from birth to maturity for height, weight, height velocity, and weight velocity: British children, 1965. II. Arch Dis Child. 1966 Dec;41(220):613–635. doi: 10.1136/adc.41.220.613. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Thomsen K., Gotfredsen A., Christiansen C. Is postmenopausal bone loss an age-related phenomenon? Calcif Tissue Int. 1986 Sep;39(3):123–127. doi: 10.1007/BF02555106. [DOI] [PubMed] [Google Scholar]
  28. Whitehouse R. W., Adams J. E., Bancroft K., Vaughan-Williams C. A., Elstein M. The effects of nafarelin and danazol on vertebral trabecular bone mass in patients with endometriosis. Clin Endocrinol (Oxf) 1990 Sep;33(3):365–373. doi: 10.1111/j.1365-2265.1990.tb00501.x. [DOI] [PubMed] [Google Scholar]
  29. de Boer H., Blok G. J., van Lingen A., Teule G. J., Lips P., van der Veen E. A. Consequences of childhood-onset growth hormone deficiency for adult bone mass. J Bone Miner Res. 1994 Aug;9(8):1319–1326. doi: 10.1002/jbmr.5650090822. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES