Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Apr;79(11-12):1717–1722. doi: 10.1038/sj.bjc.6690273

Quantification of longitudinal tissue pO2 gradients in window chamber tumours: impact on tumour hypoxia

M W Dewhirst 1, E T Ong 1, R D Braun 1, B Smith 2, B Klitzman 3, S M Evans 4, D Wilson 5
PMCID: PMC2362789  PMID: 10206282

Abstract

We previously reported that the arteriolar input in window chamber tumours is limited in number and is constrained to enter the tumour from one surface, and that the pO2 of tumour arterioles is lower than in comparable arterioles of normal tissues. On average, the vascular pO2 in vessels of the upper surface of these tumours is lower than the pO2 of vessels on the fascial side, suggesting that there may be steep vascular longitudinal gradients (defined as the decline in vascular pO2 along the afferent path of blood flow) that contribute to vascular hypoxia on the upper surface of the tumours. However, we have not previously measured tissue pO2 on both surfaces of these chambers in the same tumour. In this report, we investigated the hypothesis that the anatomical constraint of arteriolar supply from one side of the tumour results in longitudinal gradients in pO2 sufficient in magnitude to create vascular hypoxia in tumours grown in dorsal flap window chambers. Fischer-344 rats had dorsal flap window chambers implanted in the skin fold with simultaneous transplantation of the R3230AC tumour. Tumours were studied at 9–11 days after transplantation, at a diameter of 3–4 mm; the tissue thickness was 200 μm. For magnetic resonance microscopic imaging, gadolinium DTPA bovine serum albumin (BSA-DTPA-Gd) complex was injected i.v., followed by fixation in 10% formalin and removal from the animal. The sample was imaged at 9.4 T, yielding voxel sizes of 40 μm. Intravital microscopy was used to visualize the position and number of arterioles entering window chamber tumour preparations. Phosphorescence life time imaging (PLI) was used to measure vascular pO2. Blue and green light excitations of the upper and lower surfaces of window chambers were made (penetration depth of light ~50 vs >200 μm respectively). Arteriolar input into window chamber tumours was limited to 1 or 2 vessels, and appeared to be constrained to the fascial surface upon which the tumour grows. PLI of the tumour surface indicated greater hypoxia with blue compared with green light excitation (P < 0.03 for 10th and 25th percentiles and for per cent pixels < 10 mmHg). In contrast, illumination of the fascial surface with blue light indicated less hypoxia compared with illumination of the tumour surface (P < 0.05 for 10th and 25th percentiles and for per cent pixels < 10 mmHg). There was no significant difference in pO2 distributions for blue and green light excitation from the fascial surface nor for green light excitation when viewed from either surface. The PLI data demonstrates that the upper surface of the tumour is more hypoxic because blue light excitation yields lower pO2 values than green light excitation. This is further verified in the subset of chambers in which blue light excitation of the fascial surface showed higher pO2 distributions compared with the tumour surface. These results suggest that there are steep longitudinal gradients in vascular pO2 in this tumour model that are created by the limited number and orientation of the arterioles. This contributes to tumour hypoxia. Arteriolar supply is often limited in other tumours as well, suggesting that this may represent another cause for tumour hypoxia. This report is the first direct demonstration that longitudinal oxygen gradients actually lead to hypoxia in tumours. © 1999 Cancer Research Campaign

Keywords: hypoxia, oxygen transport, tumours, longitudinal gradients

Full Text

The Full Text of this article is available as a PDF (366.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cerniglia G. J., Wilson D. F., Pawlowski M., Vinogradov S., Biaglow J. Intravascular oxygen distribution in subcutaneous 9L tumors and radiation sensitivity. J Appl Physiol (1985) 1997 Jun;82(6):1939–1945. doi: 10.1152/jappl.1997.82.6.1939. [DOI] [PubMed] [Google Scholar]
  2. Cline J. M., Thrall D. E., Page R. L., Franko A. J., Raleigh J. A. Immunohistochemical detection of a hypoxia marker in spontaneous canine tumours. Br J Cancer. 1990 Dec;62(6):925–931. doi: 10.1038/bjc.1990.411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dewhirst M. W., Ong E. T., Klitzman B., Secomb T. W., Vinuya R. Z., Dodge R., Brizel D., Gross J. F. Perivascular oxygen tensions in a transplantable mammary tumor growing in a dorsal flap window chamber. Radiat Res. 1992 May;130(2):171–182. [PubMed] [Google Scholar]
  4. Dewhirst M. W., Ong E. T., Madwed D., Klitzman B., Secomb T., Brizel D., Bonaventura J., Rosner G., Kavanagh B., Edwards J. Effects of the calcium channel blocker flunarizine on the hemodynamics and oxygenation of tumor microvasculature. Radiat Res. 1992 Oct;132(1):61–68. [PubMed] [Google Scholar]
  5. Dewhirst M. W., Secomb T. W., Ong E. T., Hsu R., Gross J. F. Determination of local oxygen consumption rates in tumors. Cancer Res. 1994 Jul 1;54(13):3333–3336. [PubMed] [Google Scholar]
  6. Duling B. R., Berne R. M. Longitudinal gradients in periarteriolar oxygen tension. A possible mechanism for the participation of oxygen in local regulation of blood flow. Circ Res. 1970 Nov;27(5):669–678. doi: 10.1161/01.res.27.5.669. [DOI] [PubMed] [Google Scholar]
  7. Ellsworth M. L., Pittman R. N. Arterioles supply oxygen to capillaries by diffusion as well as by convection. Am J Physiol. 1990 Apr;258(4 Pt 2):H1240–H1243. doi: 10.1152/ajpheart.1990.258.4.H1240. [DOI] [PubMed] [Google Scholar]
  8. Ellsworth M. L., Pittman R. N., Ellis C. G. Measurement of hemoglobin oxygen saturation in capillaries. Am J Physiol. 1987 May;252(5 Pt 2):H1031–H1040. doi: 10.1152/ajpheart.1987.252.5.H1031. [DOI] [PubMed] [Google Scholar]
  9. Evans S. M., Joiner B., Jenkins W. T., Laughlin K. M., Lord E. M., Koch C. J. Identification of hypoxia in cells and tissues of epigastric 9L rat glioma using EF5 [2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl) acetamide]. Br J Cancer. 1995 Oct;72(4):875–882. doi: 10.1038/bjc.1995.427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Falk P. Patterns of vasculature in two pairs of related fibrosarcomas in the rat and their relation to tumour responses to single large doses of radiation. Eur J Cancer. 1978 Mar;14(3):237–250. doi: 10.1016/0014-2964(78)90187-1. [DOI] [PubMed] [Google Scholar]
  11. Falk P. The vascular pattern of the spontaneous C3H mouse mammary carcinoma and its significance in radiation response and in hyperthermia. Eur J Cancer. 1980 Feb;16(2):203–217. doi: 10.1016/0014-2964(80)90152-8. [DOI] [PubMed] [Google Scholar]
  12. Fenton B. M., Boyce D. J. Micro-regional mapping of HbO2 saturations and blood flow following nicotinamide administration. Int J Radiat Oncol Biol Phys. 1994 Jun 15;29(3):459–462. doi: 10.1016/0360-3016(94)90438-3. [DOI] [PubMed] [Google Scholar]
  13. Helmlinger G., Yuan F., Dellian M., Jain R. K. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med. 1997 Feb;3(2):177–182. doi: 10.1038/nm0297-177. [DOI] [PubMed] [Google Scholar]
  14. Kennedy A. S., Raleigh J. A., Perez G. M., Calkins D. P., Thrall D. E., Novotny D. B., Varia M. A. Proliferation and hypoxia in human squamous cell carcinoma of the cervix: first report of combined immunohistochemical assays. Int J Radiat Oncol Biol Phys. 1997 Mar 1;37(4):897–905. doi: 10.1016/s0360-3016(96)00539-1. [DOI] [PubMed] [Google Scholar]
  15. Kerger H., Torres Filho I. P., Rivas M., Winslow R. M., Intaglietta M. Systemic and subcutaneous microvascular oxygen tension in conscious Syrian golden hamsters. Am J Physiol. 1995 Feb;268(2 Pt 2):H802–H810. doi: 10.1152/ajpheart.1995.268.2.H802. [DOI] [PubMed] [Google Scholar]
  16. LAGERGREN C., LINDBOM A., SODERBERG G. Vascularization of fibromatous and fibrosarcomatous tumors. Histopathologic, microangiographic and angiographic studies. Acta radiol. 1960 Jan;53:1–16. doi: 10.3109/00016926009171645. [DOI] [PubMed] [Google Scholar]
  17. Mueller-Klieser W., Vaupel P., Manz R., Schmidseder R. Intracapillary oxyhemoglobin saturation of malignant tumors in humans. Int J Radiat Oncol Biol Phys. 1981 Oct;7(10):1397–1404. doi: 10.1016/0360-3016(81)90036-5. [DOI] [PubMed] [Google Scholar]
  18. Papenfuss H. D., Gross J. F., Intaglietta M., Treese F. A. A transparent access chamber for the rat dorsal skin fold. Microvasc Res. 1979 Nov;18(3):311–318. doi: 10.1016/0026-2862(79)90039-6. [DOI] [PubMed] [Google Scholar]
  19. Raleigh JA, Dewhirst MW, Thrall DE. Measuring Tumor Hypoxia. Semin Radiat Oncol. 1996 Jan;6(1):37–45. doi: 10.1053/SRAO0060037. [DOI] [PubMed] [Google Scholar]
  20. Secomb T. W., Hsu R., Dewhirst M. W., Klitzman B., Gross J. F. Analysis of oxygen transport to tumor tissue by microvascular networks. Int J Radiat Oncol Biol Phys. 1993 Feb 15;25(3):481–489. doi: 10.1016/0360-3016(93)90070-c. [DOI] [PubMed] [Google Scholar]
  21. Secomb T. W., Hsu R., Ong E. T., Gross J. F., Dewhirst M. W. Analysis of the effects of oxygen supply and demand on hypoxic fraction in tumors. Acta Oncol. 1995;34(3):313–316. doi: 10.3109/02841869509093981. [DOI] [PubMed] [Google Scholar]
  22. Shan S. Q., Rosner G. L., Braun R. D., Hahn J., Pearce C., Dewhirst M. W. Effects of diethylamine/nitric oxide on blood perfusion and oxygenation in the R3230Ac mammary carcinoma. Br J Cancer. 1997;76(4):429–437. doi: 10.1038/bjc.1997.406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Smith B. R., Johnson G. A., Groman E. V., Linney E. Magnetic resonance microscopy of mouse embryos. Proc Natl Acad Sci U S A. 1994 Apr 26;91(9):3530–3533. doi: 10.1073/pnas.91.9.3530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Swain D. P., Pittman R. N. Oxygen exchange in the microcirculation of hamster retractor muscle. Am J Physiol. 1989 Jan;256(1 Pt 2):H247–H255. doi: 10.1152/ajpheart.1989.256.1.H247. [DOI] [PubMed] [Google Scholar]
  25. THOMLINSON R. H., GRAY L. H. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer. 1955 Dec;9(4):539–549. doi: 10.1038/bjc.1955.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Torres Filho I. P., Kerger H., Intaglietta M. pO2 measurements in arteriolar networks. Microvasc Res. 1996 Mar;51(2):202–212. doi: 10.1006/mvre.1996.0021. [DOI] [PubMed] [Google Scholar]
  27. Vinogradov S. A., Lo L. W., Jenkins W. T., Evans S. M., Koch C., Wilson D. F. Noninvasive imaging of the distribution in oxygen in tissue in vivo using near-infrared phosphors. Biophys J. 1996 Apr;70(4):1609–1617. doi: 10.1016/S0006-3495(96)79764-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wilson D. F., Cerniglia G. J. Localization of tumors and evaluation of their state of oxygenation by phosphorescence imaging. Cancer Res. 1992 Jul 15;52(14):3988–3993. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES