Abstract
Experimental studies indicated that long-chain polyunsaturated fatty acids may increase sensitivity of mammary tumours to several cytotoxic drugs. To evaluate this hypothesis in breast cancer, we have prospectively studied the association between levels of fatty acids stored in breast adipose tissue and the response of the tumour to chemotherapy in 56 patients with an initially localized breast carcinoma. Adipose breast tissue was obtained at the time of biopsy, and individual fatty acids were measured as a percentage of total fatty acids using capillary gas chromatography. Patients then received primary chemotherapy, combining mitoxantrone, vindesine, cyclophosphamide and 5-fluorouracil every 4 weeks. Tumour size was reassessed after three cycles of chemotherapy. Tumour response was evaluated according to World Health Organization criteria. Complete or partial response to chemotherapy was achieved in 26 patients (47%). Level of n-3 polyunsaturated fatty acids in adipose tissue was higher in the group of patients with complete or partial response to chemotherapy than in patients with no response or with tumour progression (P < 0.004). Among n-3 polyunsaturated, only docosahexaenoic acid (22:6n-3) was significantly associated with tumour response (P < 0.005). In a logistic regression analysis taking into account age, body mass index and tumour size, 22:6 n-3 level proved to be an independent predictor for chemosensitivity (P = 0.03). These results suggest that, in breast cancer, 22:6 n-3 may increase the response of the tumour to the cytotoxic agents used. © 1999 Cancer Research Campaign
Keywords: n-3 fatty acids, adipose tissue, docosahexaenoic acid, breast carcinoma, chemosensitivity
Full Text
The Full Text of this article is available as a PDF (83.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BLOOM H. J., RICHARDSON W. W. Histological grading and prognosis in breast cancer; a study of 1409 cases of which 359 have been followed for 15 years. Br J Cancer. 1957 Sep;11(3):359–377. doi: 10.1038/bjc.1957.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bagga D., Capone S., Wang H. J., Heber D., Lill M., Chap L., Glaspy J. A. Dietary modulation of omega-3/omega-6 polyunsaturated fatty acid ratios in patients with breast cancer. J Natl Cancer Inst. 1997 Aug 6;89(15):1123–1131. doi: 10.1093/jnci/89.15.1123. [DOI] [PubMed] [Google Scholar]
- Borgeson C. E., Pardini L., Pardini R. S., Reitz R. C. Effects of dietary fish oil on human mammary carcinoma and on lipid-metabolizing enzymes. Lipids. 1989 Apr;24(4):290–295. doi: 10.1007/BF02535165. [DOI] [PubMed] [Google Scholar]
- Bougnoux P., Koscielny S., Chajès V., Descamps P., Couet C., Calais G. alpha-Linolenic acid content of adipose breast tissue: a host determinant of the risk of early metastasis in breast cancer. Br J Cancer. 1994 Aug;70(2):330–334. doi: 10.1038/bjc.1994.302. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burns C. P., Haugstad B. N., Mossman C. J., North J. A., Ingraham L. M. Membrane lipid alteration: effect on cellular uptake of mitoxantrone. Lipids. 1988 May;23(5):393–397. doi: 10.1007/BF02535508. [DOI] [PubMed] [Google Scholar]
- Calais G., Berger C., Descamps P., Chapet S., Reynaud-Bougnoux A., Body G., Bougnoux P., Lansac J., Le Floch O. Conservative treatment feasibility with induction chemotherapy, surgery, and radiotherapy for patients with breast carcinoma larger than 3 cm. Cancer. 1994 Aug 15;74(4):1283–1288. doi: 10.1002/1097-0142(19940815)74:4<1283::aid-cncr2820740417>3.0.co;2-s. [DOI] [PubMed] [Google Scholar]
- Callaghan R., Stafford A., Epand R. M. Increased accumulation of drugs in a multidrug resistant cell line by alteration of membrane biophysical properties. Biochim Biophys Acta. 1993 Feb 17;1175(3):277–282. doi: 10.1016/0167-4889(93)90217-d. [DOI] [PubMed] [Google Scholar]
- Chajes V., Niyongabo T., Lanson M., Fignon A., Couet C., Bougnoux P. Fatty-acid composition of breast and iliac adipose tissue in breast-cancer patients. Int J Cancer. 1992 Feb 1;50(3):405–408. doi: 10.1002/ijc.2910500314. [DOI] [PubMed] [Google Scholar]
- Chajès V., Lanson M., Fetissof F., Lhuillery C., Bougnoux P. Membrane fatty acids of breast carcinoma: contribution of host fatty acids and tumor properties. Int J Cancer. 1995 Oct 9;63(2):169–175. doi: 10.1002/ijc.2910630204. [DOI] [PubMed] [Google Scholar]
- Chajès V., Sattler W., Stranzl A., Kostner G. M. Influence of n-3 fatty acids on the growth of human breast cancer cells in vitro: relationship to peroxides and vitamin-E. Breast Cancer Res Treat. 1995 Jun;34(3):199–212. doi: 10.1007/BF00689711. [DOI] [PubMed] [Google Scholar]
- Decaudin D., Marzo I., Brenner C., Kroemer G. Mitochondria in chemotherapy-induced apoptosis: a prospective novel target of cancer therapy (review). Int J Oncol. 1998 Jan;12(1):141–152. [PubMed] [Google Scholar]
- Germain E., Chajès V., Cognault S., Lhuillery C., Bougnoux P. Enhancement of doxorubicin cytotoxicity by polyunsaturated fatty acids in the human breast tumor cell line MDA-MB-231: relationship to lipid peroxidation. Int J Cancer. 1998 Feb 9;75(4):578–583. doi: 10.1002/(sici)1097-0215(19980209)75:4<578::aid-ijc14>3.0.co;2-5. [DOI] [PubMed] [Google Scholar]
- Gonzalez M. J., Schemmel R. A., Dugan L., Jr, Gray J. I., Welsch C. W. Dietary fish oil inhibits human breast carcinoma growth: a function of increased lipid peroxidation. Lipids. 1993 Sep;28(9):827–832. doi: 10.1007/BF02536237. [DOI] [PubMed] [Google Scholar]
- Gonzalez M. J., Schemmel R. A., Gray J. I., Dugan L., Jr, Sheffield L. G., Welsch C. W. Effect of dietary fat on growth of MCF-7 and MDA-MB231 human breast carcinomas in athymic nude mice: relationship between carcinoma growth and lipid peroxidation product levels. Carcinogenesis. 1991 Jul;12(7):1231–1235. doi: 10.1093/carcin/12.7.1231. [DOI] [PubMed] [Google Scholar]
- Guffy M. M., North J. A., Burns C. P. Effect of cellular fatty acid alteration on adriamycin sensitivity in cultured L1210 murine leukemia cells. Cancer Res. 1984 May;44(5):1863–1866. [PubMed] [Google Scholar]
- Hardman W. E., Barnes C. J., Knight C. W., Cameron I. L. Effects of iron supplementation and ET-18-OCH3 on MDA-MB 231 breast carcinomas in nude mice consuming a fish oil diet. Br J Cancer. 1997;76(3):347–354. doi: 10.1038/bjc.1997.389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holm L. E., Nordevang E., Hjalmar M. L., Lidbrink E., Callmer E., Nilsson B. Treatment failure and dietary habits in women with breast cancer. J Natl Cancer Inst. 1993 Jan 6;85(1):32–36. doi: 10.1093/jnci/85.1.32. [DOI] [PubMed] [Google Scholar]
- London S. J., Sacks F. M., Caesar J., Stampfer M. J., Siguel E., Willett W. C. Fatty acid composition of subcutaneous adipose tissue and diet in postmenopausal US women. Am J Clin Nutr. 1991 Aug;54(2):340–345. doi: 10.1093/ajcn/54.2.340. [DOI] [PubMed] [Google Scholar]
- Masotti L., Casali E., Galeotti T. Lipid peroxidation in tumour cells. Free Radic Biol Med. 1988;4(6):377–386. doi: 10.1016/0891-5849(88)90089-5. [DOI] [PubMed] [Google Scholar]
- Miller A. B., Hoogstraten B., Staquet M., Winkler A. Reporting results of cancer treatment. Cancer. 1981 Jan 1;47(1):207–214. doi: 10.1002/1097-0142(19810101)47:1<207::aid-cncr2820470134>3.0.co;2-6. [DOI] [PubMed] [Google Scholar]
- Pelletier H., Millot J. M., Chauffert B., Manfait M., Genne P., Martin F. Mechanisms of resistance of confluent human and rat colon cancer cells to anthracyclines: alteration of drug passive diffusion. Cancer Res. 1990 Oct 15;50(20):6626–6631. [PubMed] [Google Scholar]
- Shao Y., Pardini L., Pardini R. S. Dietary menhaden oil enhances mitomycin C antitumor activity toward human mammary carcinoma MX-1. Lipids. 1995 Nov;30(11):1035–1045. doi: 10.1007/BF02536289. [DOI] [PubMed] [Google Scholar]
- Shao Y., Pardini L., Pardini R. S. Enhancement of the antineoplastic effect of mitomycin C by dietary fat. Cancer Res. 1994 Dec 15;54(24):6452–6457. [PubMed] [Google Scholar]
- Shao Y., Pardini L., Pardini R. S. Intervention of transplantable human mammary carcinoma MX-1 chemotherapy with dietary menhaden oil in athymic mice: increased therapeutic effects and decreased toxicity of cyclophosphamide. Nutr Cancer. 1997;28(1):63–73. doi: 10.1080/01635589709514554. [DOI] [PubMed] [Google Scholar]
- Siegfried J. A., Kennedy K. A., Sartorelli A. C., Tritton T. R. The role of membranes in the mechanism of action of the antineoplastic agent adriamycin. Spin-labeling studies with chronically hypoxic and drug-resistant tumor cells. J Biol Chem. 1983 Jan 10;258(1):339–343. [PubMed] [Google Scholar]
- Steel G. G. Terminology in the description of drug-radiation interactions. Int J Radiat Oncol Biol Phys. 1979 Aug;5(8):1145–1150. doi: 10.1016/0360-3016(79)90634-5. [DOI] [PubMed] [Google Scholar]
- Tonkin K., Tritchler D., Tannock I. Criteria of tumor response used in clinical trials of chemotherapy. J Clin Oncol. 1985 Jun;3(6):870–875. doi: 10.1200/JCO.1985.3.6.870. [DOI] [PubMed] [Google Scholar]
- Zijlstra J. G., de Vries E. G., Muskiet F. A., Martini I. A., Timmer-Bosscha H., Mulder N. H. Influence of docosahexaenoic acid in vitro on intracellular adriamycin concentration in lymphocytes and human adriamycin-sensitive and -resistant small-cell lung cancer cell lines, and on cytotoxicity in the tumor cell lines. Int J Cancer. 1987 Dec 15;40(6):850–856. doi: 10.1002/ijc.2910400625. [DOI] [PubMed] [Google Scholar]
