Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Apr;79(11-12):1828–1835. doi: 10.1038/sj.bjc.6990291

Gelatinase-A (MMP-2), gelatinase-B (MMP-9) and membrane type matrix metalloproteinase-1 (MT1-MMP) are involved in different aspects of the pathophysiology of malignant gliomas

P A Forsyth 1,4,6, H Wong 3, T D Laing 3, N B Rewcastle 6, D G Morris 1,4,6, H Muzik 1,3,4,6, K J Leco 3,2, R N Johnston 3, P M A Brasher 2, G Sutherland, D R Edwards 3
PMCID: PMC2362801  PMID: 10206300

Abstract

Matrix metalloproteinases (MMPs) have been implicated as important factors in gliomas since they may both facilitate invasion into the surrounding brain and participate in neovascularization. We have tested the hypothesis that deregulated expression of gelatinase-A or B, or an activator of gelatinase-A, MT1-MMP, may contribute directly to human gliomas by quantifying the expression of these MMPs in 46 brain tumour specimens and seven control tissues. Quantitative RT-PCR and gelatin zymography showed that gelatinase-A in glioma specimens was higher than in normal tissue; these were significantly elevated in low grade gliomas and remained elevated in GBMs. Gelatinase-B transcript and activity levels were also higher than in normal brain and more strongly correlated with tumour grade. We did not see a close relationship between the levels of expression of MT1-MMP mRNA and amounts of activated gelatinase-A. In situ hybridization localized gelatinase-A and MT1-MMP transcripts to normal neuronal and glia, malignant glioma cells and blood vessels. In contrast, gelatinase-B showed a more restricted pattern of expression; it was strongly expressed in blood vessels at proliferating margins, as well as tumour cells in some cases. These data suggest that gelatinase-A, -B and MT1-MMP are important in the pathophysiology of human gliomas. The primary role of gelatinase-B may lie in remodelling associated with neovascularization, whereas gelatinase-A and MT1-MMP may be involved in both glial invasion and angiogenesis. © 1999 Cancer Research Campaign

Keywords: gliomas, gelatinase-A, gelatinase-B, MT1-MMP, in situ hybridization

Full Text

The Full Text of this article is available as a PDF (417.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apodaca G., Rutka J. T., Bouhana K., Berens M. E., Giblin J. R., Rosenblum M. L., McKerrow J. H., Banda M. J. Expression of metalloproteinases and metalloproteinase inhibitors by fetal astrocytes and glioma cells. Cancer Res. 1990 Apr 15;50(8):2322–2329. [PubMed] [Google Scholar]
  2. Aznavoorian S., Murphy A. N., Stetler-Stevenson W. G., Liotta L. A. Molecular aspects of tumor cell invasion and metastasis. Cancer. 1993 Feb 15;71(4):1368–1383. doi: 10.1002/1097-0142(19930215)71:4<1368::aid-cncr2820710432>3.0.co;2-l. [DOI] [PubMed] [Google Scholar]
  3. Azzam H. S., Arand G., Lippman M. E., Thompson E. W. Association of MMP-2 activation potential with metastatic progression in human breast cancer cell lines independent of MMP-2 production. J Natl Cancer Inst. 1993 Nov 3;85(21):1758–1764. doi: 10.1093/jnci/85.21.1758. [DOI] [PubMed] [Google Scholar]
  4. Bendeck M. P., Irvin C., Reidy M. A. Inhibition of matrix metalloproteinase activity inhibits smooth muscle cell migration but not neointimal thickening after arterial injury. Circ Res. 1996 Jan;78(1):38–43. doi: 10.1161/01.res.78.1.38. [DOI] [PubMed] [Google Scholar]
  5. Bernhard E. J., Gruber S. B., Muschel R. J. Direct evidence linking expression of matrix metalloproteinase 9 (92-kDa gelatinase/collagenase) to the metastatic phenotype in transformed rat embryo cells. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4293–4297. doi: 10.1073/pnas.91.10.4293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brown P. D., Bloxidge R. E., Stuart N. S., Gatter K. C., Carmichael J. Association between expression of activated 72-kilodalton gelatinase and tumor spread in non-small-cell lung carcinoma. J Natl Cancer Inst. 1993 Apr 7;85(7):574–578. doi: 10.1093/jnci/85.7.574. [DOI] [PubMed] [Google Scholar]
  7. Burger P. C., Dubois P. J., Schold S. C., Jr, Smith K. R., Jr, Odom G. L., Crafts D. C., Giangaspero F. Computerized tomographic and pathologic studies of the untreated, quiescent, and recurrent glioblastoma multiforme. J Neurosurg. 1983 Feb;58(2):159–169. doi: 10.3171/jns.1983.58.2.0159. [DOI] [PubMed] [Google Scholar]
  8. Butler G. S., Will H., Atkinson S. J., Murphy G. Membrane-type-2 matrix metalloproteinase can initiate the processing of progelatinase A and is regulated by the tissue inhibitors of metalloproteinases. Eur J Biochem. 1997 Mar 1;244(2):653–657. doi: 10.1111/j.1432-1033.1997.t01-1-00653.x. [DOI] [PubMed] [Google Scholar]
  9. Cornelius L. A., Nehring L. C., Roby J. D., Parks W. C., Welgus H. G. Human dermal microvascular endothelial cells produce matrix metalloproteinases in response to angiogenic factors and migration. J Invest Dermatol. 1995 Aug;105(2):170–176. doi: 10.1111/1523-1747.ep12317080. [DOI] [PubMed] [Google Scholar]
  10. Costello P. C., Del Maestro R. F., Stetler-Stevenson W. G. Gelatinase A expression in human malignant gliomas. Ann N Y Acad Sci. 1994 Sep 6;732:450–452. doi: 10.1111/j.1749-6632.1994.tb24782.x. [DOI] [PubMed] [Google Scholar]
  11. Davies B., Waxman J., Wasan H., Abel P., Williams G., Krausz T., Neal D., Thomas D., Hanby A., Balkwill F. Levels of matrix metalloproteases in bladder cancer correlate with tumor grade and invasion. Cancer Res. 1993 Nov 15;53(22):5365–5369. [PubMed] [Google Scholar]
  12. Edwards D. R., Beaudry P. P., Laing T. D., Kowal V., Leco K. J., Leco P. A., Lim M. S. The roles of tissue inhibitors of metalloproteinases in tissue remodelling and cell growth. Int J Obes Relat Metab Disord. 1996 Mar;20 (Suppl 3):S9–15. [PubMed] [Google Scholar]
  13. Foda H. D., George S., Conner C., Drews M., Tompkins D. C., Zucker S. Activation of human umbilical vein endothelial cell progelatinase A by phorbol myristate acetate: a protein kinase C-dependent mechanism involving a membrane-type matrix metalloproteinase. Lab Invest. 1996 Feb;74(2):538–545. [PubMed] [Google Scholar]
  14. Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971 Nov 18;285(21):1182–1186. doi: 10.1056/NEJM197111182852108. [DOI] [PubMed] [Google Scholar]
  15. Forsyth P. A., Laing T. D., Gibson A. W., Rewcastle N. B., Brasher P., Sutherland G., Johnston R. N., Edwards D. R. High levels of gelatinase-B and active gelatinase-A in metastatic glioblastoma. J Neurooncol. 1998 Jan;36(1):21–29. doi: 10.1023/a:1005879027267. [DOI] [PubMed] [Google Scholar]
  16. Giese A., Westphal M. Glioma invasion in the central nervous system. Neurosurgery. 1996 Aug;39(2):235–252. doi: 10.1097/00006123-199608000-00001. [DOI] [PubMed] [Google Scholar]
  17. Haddad S. F., Moore S. A., Schelper R. L., Goeken J. A. Vascular smooth muscle hyperplasia underlies the formation of glomeruloid vascular structures of glioblastoma multiforme. J Neuropathol Exp Neurol. 1992 Sep;51(5):488–492. doi: 10.1097/00005072-199209000-00002. [DOI] [PubMed] [Google Scholar]
  18. Hanahan D., Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996 Aug 9;86(3):353–364. doi: 10.1016/s0092-8674(00)80108-7. [DOI] [PubMed] [Google Scholar]
  19. Hanemaaijer R., Koolwijk P., le Clercq L., de Vree W. J., van Hinsbergh V. W. Regulation of matrix metalloproteinase expression in human vein and microvascular endothelial cells. Effects of tumour necrosis factor alpha, interleukin 1 and phorbol ester. Biochem J. 1993 Dec 15;296(Pt 3):803–809. doi: 10.1042/bj2960803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Heppner K. J., Matrisian L. M., Jensen R. A., Rodgers W. H. Expression of most matrix metalloproteinase family members in breast cancer represents a tumor-induced host response. Am J Pathol. 1996 Jul;149(1):273–282. [PMC free article] [PubMed] [Google Scholar]
  21. Hirschi K. K., D'Amore P. A. Pericytes in the microvasculature. Cardiovasc Res. 1996 Oct;32(4):687–698. [PubMed] [Google Scholar]
  22. Johnson M. D., Kim H. R., Chesler L., Tsao-Wu G., Bouck N., Polverini P. J. Inhibition of angiogenesis by tissue inhibitor of metalloproteinase. J Cell Physiol. 1994 Jul;160(1):194–202. doi: 10.1002/jcp.1041600122. [DOI] [PubMed] [Google Scholar]
  23. Kelly P. J., Daumas-Duport C., Scheithauer B. W., Kall B. A., Kispert D. B. Stereotactic histologic correlations of computed tomography- and magnetic resonance imaging-defined abnormalities in patients with glial neoplasms. Mayo Clin Proc. 1987 Jun;62(6):450–459. doi: 10.1016/s0025-6196(12)65470-6. [DOI] [PubMed] [Google Scholar]
  24. Leco K. J., Apte S. S., Taniguchi G. T., Hawkes S. P., Khokha R., Schultz G. A., Edwards D. R. Murine tissue inhibitor of metalloproteinases-4 (Timp-4): cDNA isolation and expression in adult mouse tissues. FEBS Lett. 1997 Jan 20;401(2-3):213–217. doi: 10.1016/s0014-5793(96)01474-3. [DOI] [PubMed] [Google Scholar]
  25. Lewalle J. M., Munaut C., Pichot B., Cataldo D., Baramova E., Foidart J. M. Plasma membrane-dependent activation of gelatinase A in human vascular endothelial cells. J Cell Physiol. 1995 Dec;165(3):475–483. doi: 10.1002/jcp.1041650305. [DOI] [PubMed] [Google Scholar]
  26. Mignatti P., Rifkin D. B. Biology and biochemistry of proteinases in tumor invasion. Physiol Rev. 1993 Jan;73(1):161–195. doi: 10.1152/physrev.1993.73.1.161. [DOI] [PubMed] [Google Scholar]
  27. Murphy G., Knäuper V. Relating matrix metalloproteinase structure to function: why the "hemopexin" domain? Matrix Biol. 1997 Mar;15(8-9):511–518. doi: 10.1016/s0945-053x(97)90025-1. [DOI] [PubMed] [Google Scholar]
  28. Nakagawa T., Kubota T., Kabuto M., Fujimoto N., Okada Y. Secretion of matrix metalloproteinase-2 (72 kD gelatinase/type IV collagenase = gelatinase A) by malignant human glioma cell lines: implications for the growth and cellular invasion of the extracellular matrix. J Neurooncol. 1996 Apr;28(1):13–24. doi: 10.1007/BF00300442. [DOI] [PubMed] [Google Scholar]
  29. Nakagawa T., Kubota T., Kabuto M., Sato K., Kawano H., Hayakawa T., Okada Y. Production of matrix metalloproteinases and tissue inhibitor of metalloproteinases-1 by human brain tumors. J Neurosurg. 1994 Jul;81(1):69–77. doi: 10.3171/jns.1994.81.1.0069. [DOI] [PubMed] [Google Scholar]
  30. Nakano A., Tani E., Miyazaki K., Furuyama J., Matsumoto T. Expressions of matrilysin and stromelysin in human glioma cells. Biochem Biophys Res Commun. 1993 May 14;192(3):999–1003. doi: 10.1006/bbrc.1993.1515. [DOI] [PubMed] [Google Scholar]
  31. Nakano A., Tani E., Miyazaki K., Yamamoto Y., Furuyama J. Matrix metalloproteinases and tissue inhibitors of metalloproteinases in human gliomas. J Neurosurg. 1995 Aug;83(2):298–307. doi: 10.3171/jns.1995.83.2.0298. [DOI] [PubMed] [Google Scholar]
  32. Pendás A. M., Knäuper V., Puente X. S., Llano E., Mattei M. G., Apte S., Murphy G., López-Otín C. Identification and characterization of a novel human matrix metalloproteinase with unique structural characteristics, chromosomal location, and tissue distribution. J Biol Chem. 1997 Feb 14;272(7):4281–4286. doi: 10.1074/jbc.272.7.4281. [DOI] [PubMed] [Google Scholar]
  33. Poulsom R., Hanby A. M., Pignatelli M., Jeffery R. E., Longcroft J. M., Rogers L., Stamp G. W. Expression of gelatinase A and TIMP-2 mRNAs in desmoplastic fibroblasts in both mammary carcinomas and basal cell carcinomas of the skin. J Clin Pathol. 1993 May;46(5):429–436. doi: 10.1136/jcp.46.5.429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Puente X. S., Pendás A. M., Llano E., Velasco G., López-Otín C. Molecular cloning of a novel membrane-type matrix metalloproteinase from a human breast carcinoma. Cancer Res. 1996 Mar 1;56(5):944–949. [PubMed] [Google Scholar]
  35. Pyke C., Ralfkiaer E., Tryggvason K., Danø K. Messenger RNA for two type IV collagenases is located in stromal cells in human colon cancer. Am J Pathol. 1993 Feb;142(2):359–365. [PMC free article] [PubMed] [Google Scholar]
  36. Rao J. S., Steck P. A., Mohanam S., Stetler-Stevenson W. G., Liotta L. A., Sawaya R. Elevated levels of M(r) 92,000 type IV collagenase in human brain tumors. Cancer Res. 1993 May 15;53(10 Suppl):2208–2211. [PubMed] [Google Scholar]
  37. Rao J. S., Yamamoto M., Mohaman S., Gokaslan Z. L., Fuller G. N., Stetler-Stevenson W. G., Rao V. H., Liotta L. A., Nicolson G. L., Sawaya R. E. Expression and localization of 92 kDa type IV collagenase/gelatinase B (MMP-9) in human gliomas. Clin Exp Metastasis. 1996 Jan;14(1):12–18. doi: 10.1007/BF00157681. [DOI] [PubMed] [Google Scholar]
  38. Rosenthal R. A., Moses M. A., Shintani Y., Megyesi J. F., Langer R., Folkman J. Purification and characterization of two collagenase inhibitors from mouse sarcoma 180 conditioned medium. J Cell Biochem. 1994 Sep;56(1):97–105. doi: 10.1002/jcb.240560114. [DOI] [PubMed] [Google Scholar]
  39. Sato H., Takino T., Okada Y., Cao J., Shinagawa A., Yamamoto E., Seiki M. A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature. 1994 Jul 7;370(6484):61–65. doi: 10.1038/370061a0. [DOI] [PubMed] [Google Scholar]
  40. Sawaya R. E., Yamamoto M., Gokaslan Z. L., Wang S. W., Mohanam S., Fuller G. N., McCutcheon I. E., Stetler-Stevenson W. G., Nicolson G. L., Rao J. S. Expression and localization of 72 kDa type IV collagenase (MMP-2) in human malignant gliomas in vivo. Clin Exp Metastasis. 1996 Jan;14(1):35–42. doi: 10.1007/BF00157684. [DOI] [PubMed] [Google Scholar]
  41. Schnaper H. W., Grant D. S., Stetler-Stevenson W. G., Fridman R., D'Orazi G., Murphy A. N., Bird R. E., Hoythya M., Fuerst T. R., French D. L. Type IV collagenase(s) and TIMPs modulate endothelial cell morphogenesis in vitro. J Cell Physiol. 1993 Aug;156(2):235–246. doi: 10.1002/jcp.1041560204. [DOI] [PubMed] [Google Scholar]
  42. Taraboletti G., Garofalo A., Belotti D., Drudis T., Borsotti P., Scanziani E., Brown P. D., Giavazzi R. Inhibition of angiogenesis and murine hemangioma growth by batimastat, a synthetic inhibitor of matrix metalloproteinases. J Natl Cancer Inst. 1995 Feb 15;87(4):293–298. doi: 10.1093/jnci/87.4.293. [DOI] [PubMed] [Google Scholar]
  43. Thorgeirsson U. P., Yoshiji H., Sinha C. C., Gomez D. E. Breast cancer; tumor neovasculature and the effect of tissue inhibitor of metalloproteinases-1 (TIMP-1) on angiogenesis. In Vivo. 1996 Mar-Apr;10(2):137–144. [PubMed] [Google Scholar]
  44. Ueno H., Nakamura H., Inoue M., Imai K., Noguchi M., Sato H., Seiki M., Okada Y. Expression and tissue localization of membrane-types 1, 2, and 3 matrix metalloproteinases in human invasive breast carcinomas. Cancer Res. 1997 May 15;57(10):2055–2060. [PubMed] [Google Scholar]
  45. Uhm J. H., Dooley N. P., Villemure J. G., Yong V. W. Glioma invasion in vitro: regulation by matrix metalloprotease-2 and protein kinase C. Clin Exp Metastasis. 1996 Oct;14(5):421–433. doi: 10.1007/BF00128958. [DOI] [PubMed] [Google Scholar]
  46. Urbanski S. J., Edwards D. R., Maitland A., Leco K. J., Watson A., Kossakowska A. E. Expression of metalloproteinases and their inhibitors in primary pulmonary carcinomas. Br J Cancer. 1992 Dec;66(6):1188–1194. doi: 10.1038/bjc.1992.434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Wesseling P., Schlingemann R. O., Rietveld F. J., Link M., Burger P. C., Ruiter D. J. Early and extensive contribution of pericytes/vascular smooth muscle cells to microvascular proliferation in glioblastoma multiforme: an immuno-light and immuno-electron microscopic study. J Neuropathol Exp Neurol. 1995 May;54(3):304–310. doi: 10.1097/00005072-199505000-00003. [DOI] [PubMed] [Google Scholar]
  48. Woessner J. F., Jr Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J. 1991 May;5(8):2145–2154. [PubMed] [Google Scholar]
  49. Wong H., Anderson W. D., Cheng T., Riabowol K. T. Monitoring mRNA expression by polymerase chain reaction: the "primer-dropping" method. Anal Biochem. 1994 Dec;223(2):251–258. doi: 10.1006/abio.1994.1581. [DOI] [PubMed] [Google Scholar]
  50. Yamamoto M., Mohanam S., Sawaya R., Fuller G. N., Seiki M., Sato H., Gokaslan Z. L., Liotta L. A., Nicolson G. L., Rao J. S. Differential expression of membrane-type matrix metalloproteinase and its correlation with gelatinase A activation in human malignant brain tumors in vivo and in vitro. Cancer Res. 1996 Jan 15;56(2):384–392. [PubMed] [Google Scholar]
  51. Yong V. W., Krekoski C. A., Forsyth P. A., Bell R., Edwards D. R. Matrix metalloproteinases and diseases of the CNS. Trends Neurosci. 1998 Feb;21(2):75–80. doi: 10.1016/s0166-2236(97)01169-7. [DOI] [PubMed] [Google Scholar]
  52. Zucker S., Conner C., DiMassmo B. I., Ende H., Drews M., Seiki M., Bahou W. F. Thrombin induces the activation of progelatinase A in vascular endothelial cells. Physiologic regulation of angiogenesis. J Biol Chem. 1995 Oct 6;270(40):23730–23738. doi: 10.1074/jbc.270.40.23730. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES