Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Apr;79(11-12):1679–1684. doi: 10.1038/sj.bjc.6690268

DT-diaphorase activity in NSCLC and SCLC cell lines: a role for fos/jun regulation

J K Kepa 1, D Ross 1
PMCID: PMC2362807  PMID: 10206277

Abstract

To assess the potential differential lung tumour expression of NAD(P)H:quinone reductase (NQO1), the human (h) NQO1 promoter was characterized in gene transfer studies. A deletion panel of 5′ flanking hNQO1 promoter constructs was made and tested in transient transfection assays in NSCLC and SCLC cell lines. The largest hNQO1 construct (–1539/+115) containing the antioxidant response element (ARE), exhibited robust levels of reporter activity in the NSCLC (H460, H520, and A549) cell lines and expression was over 12 to 77-fold higher than the minimal (–259/+115) promoter construct. In contrast, there was little difference in promoter activity between the largest and minimal promoter construct in the SCLC (H146, H82 and H187) cell lines. Deletion of the sites for NFκB and AP-2 and the XRE did not significantly affect hNQO1 promoter activity in either the NSCLC or SCLC cell lines. Robust promoter activity in NSCLC lines was mediated by a 359 bp segment of the proximal promoter that contained a canonical AP-1 binding site, TGACTCAG, within the ARE. Gel supershift assays with various specific Fos/Jun antibodies identified Fra1, Fra2 and Jun B binding activity in NSCLC cells to a promoter fragment (–477 to –438) spanning the AP-1 site, whereas SCLC do not appear to express functional Fra or Jun B. These results suggest a possible role for AP-1 activity in the differential expression of hNQO1 in NSCLC. © 1999 Cancer Research Campaign

Keywords: NAD(P)H:quinone reductase, DT-diaphorase, fos/jun, NSCLC, SCLC

Full Text

The Full Text of this article is available as a PDF (188.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angel P., Karin M. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta. 1991 Dec 10;1072(2-3):129–157. doi: 10.1016/0304-419x(91)90011-9. [DOI] [PubMed] [Google Scholar]
  2. Benson A. M., Hunkeler M. J., Talalay P. Increase of NAD(P)H:quinone reductase by dietary antioxidants: possible role in protection against carcinogenesis and toxicity. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5216–5220. doi: 10.1073/pnas.77.9.5216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berger M. S., Talcott R. E., Rosenblum M. L., Silva M., AliOsman F., Smith M. T. Use of quinones in brain-tumor therapy: preliminary results of preclinical laboratory investigations. J Toxicol Environ Health. 1985;16(5):713–719. doi: 10.1080/15287398509530781. [DOI] [PubMed] [Google Scholar]
  4. Bergers G., Graninger P., Braselmann S., Wrighton C., Busslinger M. Transcriptional activation of the fra-1 gene by AP-1 is mediated by regulatory sequences in the first intron. Mol Cell Biol. 1995 Jul;15(7):3748–3758. doi: 10.1128/mcb.15.7.3748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Castro Coto A., Hidalgo Hidalgo H., Solano Aguilar E., Coto Chacón F. Leishmaniasis en órganos genitales. Med Cutan Ibero Lat Am. 1987;15(2):145–150. [PubMed] [Google Scholar]
  6. Chiu R., Angel P., Karin M. Jun-B differs in its biological properties from, and is a negative regulator of, c-Jun. Cell. 1989 Dec 22;59(6):979–986. doi: 10.1016/0092-8674(89)90754-x. [DOI] [PubMed] [Google Scholar]
  7. Cohen D. R., Curran T. fra-1: a serum-inducible, cellular immediate-early gene that encodes a fos-related antigen. Mol Cell Biol. 1988 May;8(5):2063–2069. doi: 10.1128/mcb.8.5.2063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Coussens L. M., Yokoyama K., Chiu R. Transforming growth factor beta 1-mediated induction of junB is selectively inhibited by expression of Ad.12-E1A. J Cell Physiol. 1994 Sep;160(3):435–444. doi: 10.1002/jcp.1041600306. [DOI] [PubMed] [Google Scholar]
  9. De Long M. J., Prochaska H. J., Talalay P. Induction of NAD(P)H:quinone reductase in murine hepatoma cells by phenolic antioxidants, azo dyes, and other chemoprotectors: a model system for the study of anticarcinogens. Proc Natl Acad Sci U S A. 1986 Feb;83(3):787–791. doi: 10.1073/pnas.83.3.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Diccianni M. B., Imagawa M., Muramatsu M. The dyad palindromic glutathione transferase P enhancer binds multiple factors including AP1. Nucleic Acids Res. 1992 Oct 11;20(19):5153–5158. doi: 10.1093/nar/20.19.5153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ephrussi A., Church G. M., Tonegawa S., Gilbert W. B lineage--specific interactions of an immunoglobulin enhancer with cellular factors in vivo. Science. 1985 Jan 11;227(4683):134–140. doi: 10.1126/science.3917574. [DOI] [PubMed] [Google Scholar]
  13. Friling R. S., Bergelson S., Daniel V. Two adjacent AP-1-like binding sites form the electrophile-responsive element of the murine glutathione S-transferase Ya subunit gene. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):668–672. doi: 10.1073/pnas.89.2.668. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jaiswal A. K. Human NAD(P)H:quinone oxidoreductase (NQO1) gene structure and induction by dioxin. Biochemistry. 1991 Nov 5;30(44):10647–10653. doi: 10.1021/bi00108a007. [DOI] [PubMed] [Google Scholar]
  15. Jaiswal A. K., McBride O. W., Adesnik M., Nebert D. W. Human dioxin-inducible cytosolic NAD(P)H:menadione oxidoreductase. cDNA sequence and localization of gene to chromosome 16. J Biol Chem. 1988 Sep 25;263(27):13572–13578. [PubMed] [Google Scholar]
  16. Joseph P., Jaiswal A. K., Stobbe C. C., Chapman J. D. The role of specific reductases in the intracellular activation and binding of 2-nitroimidazoles. Int J Radiat Oncol Biol Phys. 1994 May 15;29(2):351–355. doi: 10.1016/0360-3016(94)90288-7. [DOI] [PubMed] [Google Scholar]
  17. Karin M., Liu Z. g., Zandi E. AP-1 function and regulation. Curr Opin Cell Biol. 1997 Apr;9(2):240–246. doi: 10.1016/s0955-0674(97)80068-3. [DOI] [PubMed] [Google Scholar]
  18. Kovacic-Milivojevic B., Gardner D. G. Fra-1, a Fos gene family member that activates atrial natriuretic peptide gene transcription. Hypertension. 1995 Apr;25(4 Pt 2):679–682. doi: 10.1161/01.hyp.25.4.679. [DOI] [PubMed] [Google Scholar]
  19. Kovacic-Milivojević B., Gardner D. G. Divergent regulation of the human atrial natriuretic peptide gene by c-jun and c-fos. Mol Cell Biol. 1992 Jan;12(1):292–301. doi: 10.1128/mcb.12.1.292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kovary K., Bravo R. Existence of different Fos/Jun complexes during the G0-to-G1 transition and during exponential growth in mouse fibroblasts: differential role of Fos proteins. Mol Cell Biol. 1992 Nov;12(11):5015–5023. doi: 10.1128/mcb.12.11.5015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Li Y., Jaiswal A. K. Human antioxidant-response-element-mediated regulation of type 1 NAD(P)H:quinone oxidoreductase gene expression. Effect of sulfhydryl modifying agents. Eur J Biochem. 1994 Nov 15;226(1):31–39. doi: 10.1111/j.1432-1033.1994.tb20023.x. [DOI] [PubMed] [Google Scholar]
  22. Li Y., Jaiswal A. K. Regulation of human NAD(P)H:quinone oxidoreductase gene. Role of AP1 binding site contained within human antioxidant response element. J Biol Chem. 1992 Jul 25;267(21):15097–15104. [PubMed] [Google Scholar]
  23. Malkinson A. M., Siegel D., Forrest G. L., Gazdar A. F., Oie H. K., Chan D. C., Bunn P. A., Mabry M., Dykes D. J., Harrison S. D. Elevated DT-diaphorase activity and messenger RNA content in human non-small cell lung carcinoma: relationship to the response of lung tumor xenografts to mitomycin Cł. Cancer Res. 1992 Sep 1;52(17):4752–4757. [PubMed] [Google Scholar]
  24. Prestera T., Holtzclaw W. D., Zhang Y., Talalay P. Chemical and molecular regulation of enzymes that detoxify carcinogens. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2965–2969. doi: 10.1073/pnas.90.7.2965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ryseck R. P., Bravo R. c-JUN, JUN B, and JUN D differ in their binding affinities to AP-1 and CRE consensus sequences: effect of FOS proteins. Oncogene. 1991 Apr;6(4):533–542. [PubMed] [Google Scholar]
  26. Schlager J. J., Powis G. Cytosolic NAD(P)H:(quinone-acceptor)oxidoreductase in human normal and tumor tissue: effects of cigarette smoking and alcohol. Int J Cancer. 1990 Mar 15;45(3):403–409. doi: 10.1002/ijc.2910450304. [DOI] [PubMed] [Google Scholar]
  27. Shy M. E., Shi Y., Wrabetz L., Kamholz J., Scherer S. S. Axon-Schwann cell interactions regulate the expression of c-jun in Schwann cells. J Neurosci Res. 1996 Mar 1;43(5):511–525. doi: 10.1002/(SICI)1097-4547(19960301)43:5<511::AID-JNR1>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
  28. Smitskamp-Wilms E., Giaccone G., Pinedo H. M., van der Laan B. F., Peters G. J. DT-diaphorase activity in normal and neoplastic human tissues; an indicator for sensitivity to bioreductive agents? Br J Cancer. 1995 Oct;72(4):917–921. doi: 10.1038/bjc.1995.433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Suzuki T., Okuno H., Yoshida T., Endo T., Nishina H., Iba H. Difference in transcriptional regulatory function between c-Fos and Fra-2. Nucleic Acids Res. 1991 Oct 25;19(20):5537–5542. doi: 10.1093/nar/19.20.5537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Szabo E., Riffe M. E., Steinberg S. M., Birrer M. J., Linnoila R. I. Altered cJUN expression: an early event in human lung carcinogenesis. Cancer Res. 1996 Jan 15;56(2):305–315. [PubMed] [Google Scholar]
  31. Talalay P., De Long M. J., Prochaska H. J. Identification of a common chemical signal regulating the induction of enzymes that protect against chemical carcinogenesis. Proc Natl Acad Sci U S A. 1988 Nov;85(21):8261–8265. doi: 10.1073/pnas.85.21.8261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Traver R. D., Siegel D., Beall H. D., Phillips R. M., Gibson N. W., Franklin W. A., Ross D. Characterization of a polymorphism in NAD(P)H: quinone oxidoreductase (DT-diaphorase). Br J Cancer. 1997;75(1):69–75. doi: 10.1038/bjc.1997.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Venugopal R., Jaiswal A. K. Nrf1 and Nrf2 positively and c-Fos and Fra1 negatively regulate the human antioxidant response element-mediated expression of NAD(P)H:quinone oxidoreductase1 gene. Proc Natl Acad Sci U S A. 1996 Dec 10;93(25):14960–14965. doi: 10.1073/pnas.93.25.14960. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wang B., Williamson G. Detection of a nuclear protein which binds specifically to the antioxidant responsive element (ARE) of the human NAD(P) H:quinone oxidoreductase gene. Biochim Biophys Acta. 1994 Nov 22;1219(3):645–652. doi: 10.1016/0167-4781(94)90223-2. [DOI] [PubMed] [Google Scholar]
  35. Welter J. F., Crish J. F., Agarwal C., Eckert R. L. Fos-related antigen (Fra-1), junB, and junD activate human involucrin promoter transcription by binding to proximal and distal AP1 sites to mediate phorbol ester effects on promoter activity. J Biol Chem. 1995 May 26;270(21):12614–12622. doi: 10.1074/jbc.270.21.12614. [DOI] [PubMed] [Google Scholar]
  36. Wisdon R., Verma I. M. Transformation by Fos proteins requires a C-terminal transactivation domain. Mol Cell Biol. 1993 Dec;13(12):7429–7438. doi: 10.1128/mcb.13.12.7429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Xanthoudakis S., Miao G., Wang F., Pan Y. C., Curran T. Redox activation of Fos-Jun DNA binding activity is mediated by a DNA repair enzyme. EMBO J. 1992 Sep;11(9):3323–3335. doi: 10.1002/j.1460-2075.1992.tb05411.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Yoshioka K., Deng T., Cavigelli M., Karin M. Antitumor promotion by phenolic antioxidants: inhibition of AP-1 activity through induction of Fra expression. Proc Natl Acad Sci U S A. 1995 May 23;92(11):4972–4976. doi: 10.1073/pnas.92.11.4972. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES