Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Apr;79(11-12):1672–1678. doi: 10.1038/sj.bjc.6690267

In vivo efficacy of XR9051, a potent modulator of P-glycoprotein mediated multidrug resistance

P Mistry 1, J Plumb 2, S Eccles 3, S Watson 4, I Dale 1, H Ryder 1, G Box 3, P Charlton 1, D Templeton 1, P B Bevan 1
PMCID: PMC2362811  PMID: 10206276

Abstract

Overexpression of P-glycoprotein (P-gp) is a potential cause of multidrug resistance (MDR) in tumours. We have previously reported that XR9051 (N-(4-(2-(6,7-dimethoxy-1,2,3,4-tetrahydro-2-isoquinolyl)ethyl)phenyl)-3-((3Z,6Z)-6-benzylidene-1-methyl-2,5-dioxo-3-piperazinylidene)methylbenzamide) is a potent and specific inhibitor of P-gp, which reverses drug resistance in several murine and human MDR cell lines. In this study we have evaluated the in vivo efficacy of this novel modulator in a panel of murine and human tumour models and examined its pharmacokinetic profile. Efficacy studies in mice bearing MDR syngeneic tumours (P388/DX Johnson, MC26) or human tumour xenografts (A2780AD, CH1/DOXr, H69/LX) demonstrated that co-administration of XR9051 significantly potentiated the anti-tumour activity of a range of cytotoxic drugs. This modulatory activity was observed following parenteral and oral co-administration of XR9051. In addition, the combination schedules were well-tolerated. Following intravenous administration in mice, XR9051 is rapidly distributed and accumulates in tumours and other tissues. In addition, the compound is well-absorbed after oral administration. These data suggest that XR9051 has the potential for reversing clinical MDR mediated by P-glycoprotien. © 1999 Cancer Research Campaign

Keywords: multidrug resistance, P-glycoprotein, XR9051, resistance modulators

Full Text

The Full Text of this article is available as a PDF (119.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boesch D., Gavériaux C., Jachez B., Pourtier-Manzanedo A., Bollinger P., Loor F. In vivo circumvention of P-glycoprotein-mediated multidrug resistance of tumor cells with SDZ PSC 833. Cancer Res. 1991 Aug 15;51(16):4226–4233. [PubMed] [Google Scholar]
  2. Childs S., Ling V. The MDR superfamily of genes and its biological implications. Important Adv Oncol. 1994:21–36. [PubMed] [Google Scholar]
  3. Colombo T., Gonzalez Paz O., D'Incalci M. Distribution and activity of doxorubicin combined with SDZ PSC 833 in mice with P388 and P388/DOX leukaemia. Br J Cancer. 1996 Apr;73(7):866–871. doi: 10.1038/bjc.1996.154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cros S., Guilbaud N., Berlion M., Dunn T., Regnier G., Dhainaut A., Atassi G., Bizzari J. P. In vivo evidence of complete circumvention of vincristine resistance by a new triazinoaminopiperidine derivative S 9788 in P388/VCR leukemia model. Cancer Chemother Pharmacol. 1992;30(6):491–494. doi: 10.1007/BF00685604. [DOI] [PubMed] [Google Scholar]
  5. Dale I. L., Tuffley W., Callaghan R., Holmes J. A., Martin K., Luscombe M., Mistry P., Ryder H., Stewart A. J., Charlton P. Reversal of P-glycoprotein-mediated multidrug resistance by XR9051, a novel diketopiperazine derivative. Br J Cancer. 1998 Oct;78(7):885–892. doi: 10.1038/bjc.1998.597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dalton W. S. Is p-glycoprotein a potential target for reversing clinical drug resistance? Curr Opin Oncol. 1994 Nov;6(6):595–600. doi: 10.1097/00001622-199411000-00011. [DOI] [PubMed] [Google Scholar]
  7. Dantzig A. H., Shepard R. L., Cao J., Law K. L., Ehlhardt W. J., Baughman T. M., Bumol T. F., Starling J. J. Reversal of P-glycoprotein-mediated multidrug resistance by a potent cyclopropyldibenzosuberane modulator, LY335979. Cancer Res. 1996 Sep 15;56(18):4171–4179. [PubMed] [Google Scholar]
  8. Ferry D. R., Traunecker H., Kerr D. J. Clinical trials of P-glycoprotein reversal in solid tumours. Eur J Cancer. 1996 Jun;32A(6):1070–1081. doi: 10.1016/0959-8049(96)00091-3. [DOI] [PubMed] [Google Scholar]
  9. Germann U. A. P-glycoprotein--a mediator of multidrug resistance in tumour cells. Eur J Cancer. 1996 Jun;32A(6):927–944. doi: 10.1016/0959-8049(96)00057-3. [DOI] [PubMed] [Google Scholar]
  10. Gottesman M. M., Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem. 1993;62:385–427. doi: 10.1146/annurev.bi.62.070193.002125. [DOI] [PubMed] [Google Scholar]
  11. Hyafil F., Vergely C., Du Vignaud P., Grand-Perret T. In vitro and in vivo reversal of multidrug resistance by GF120918, an acridonecarboxamide derivative. Cancer Res. 1993 Oct 1;53(19):4595–4602. [PubMed] [Google Scholar]
  12. Johnson R. K., Chitnis M. P., Embrey W. M., Gregory E. B. In vivo characteristics of resistance and cross-resistance of an adriamycin-resistant subline of P388 leukemia. Cancer Treat Rep. 1978 Oct;62(10):1535–1547. [PubMed] [Google Scholar]
  13. Lum B. L., Fisher G. A., Brophy N. A., Yahanda A. M., Adler K. M., Kaubisch S., Halsey J., Sikic B. I. Clinical trials of modulation of multidrug resistance. Pharmacokinetic and pharmacodynamic considerations. Cancer. 1993 Dec 1;72(11 Suppl):3502–3514. doi: 10.1002/1097-0142(19931201)72:11+<3502::aid-cncr2820721618>3.0.co;2-n. [DOI] [PubMed] [Google Scholar]
  14. Plumb J. A., Wishart G. C., Setanoians A., Morrison J. G., Hamilton T., Bicknell S. R., Kaye S. B. Identification of a multidrug resistance modulator with clinical potential by analysis of synergistic activity in vitro, toxicity in vivo and growth delay in a solid human tumour xenograft. Biochem Pharmacol. 1994 Jan 20;47(2):257–266. doi: 10.1016/0006-2952(94)90015-9. [DOI] [PubMed] [Google Scholar]
  15. Sato W., Fukazawa N., Nakanishi O., Baba M., Suzuki T., Yano O., Naito M., Tsuruo T. Reversal of multidrug resistance by a novel quinoline derivative, MS-209. Cancer Chemother Pharmacol. 1995;35(4):271–277. doi: 10.1007/BF00689444. [DOI] [PubMed] [Google Scholar]
  16. Shinoda H., Inaba M., Tsuruo T. In vivo circumvention of vincristine resistance in mice with P388 leukemia using a novel compound, AHC-52. Cancer Res. 1989 Apr 1;49(7):1722–1726. [PubMed] [Google Scholar]
  17. Spoelstra E. C., Dekker H., Schuurhuis G. J., Broxterman H. J., Lankelma J. P-glycoprotein drug efflux pump involved in the mechanisms of intrinsic drug resistance in various colon cancer cell lines. Evidence for a saturation of active daunorubicin transport. Biochem Pharmacol. 1991 Feb 1;41(3):349–359. doi: 10.1016/0006-2952(91)90531-9. [DOI] [PubMed] [Google Scholar]
  18. Tsuruo T., Iida H., Tsukagoshi S., Sakurai Y. Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res. 1981 May;41(5):1967–1972. [PubMed] [Google Scholar]
  19. Twentyman P. R., Fox N. E., Wright K. A., Bleehen N. M. Derivation and preliminary characterisation of adriamycin resistant lines of human lung cancer cells. Br J Cancer. 1986 Apr;53(4):529–537. doi: 10.1038/bjc.1986.83. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wacher V. J., Wu C. Y., Benet L. Z. Overlapping substrate specificities and tissue distribution of cytochrome P450 3A and P-glycoprotein: implications for drug delivery and activity in cancer chemotherapy. Mol Carcinog. 1995 Jul;13(3):129–134. doi: 10.1002/mc.2940130302. [DOI] [PubMed] [Google Scholar]
  21. Yang J. M., Goldenberg S., Gottesman M. M., Hait W. N. Characteristics of P388/VMDRC.04, a simple, sensitive model for studying P-glycoprotein antagonists. Cancer Res. 1994 Feb 1;54(3):730–737. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES