Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1994 Jan;68(1):251–257. doi: 10.1128/jvi.68.1.251-257.1994

The nonstructural glycoprotein of rotavirus affects intracellular calcium levels.

P Tian 1, Y Hu 1, W P Schilling 1, D A Lindsay 1, J Eiden 1, M K Estes 1
PMCID: PMC236284  PMID: 8254736

Abstract

Rotavirus infection of monkey kidney cells has been reported to result in a significant increase in the concentration of intracellular calcium. This increase in intracellular calcium was associated with viral protein synthesis and cytopathic effects in infected cells. We tested the effect of individual rotavirus proteins on intracellular calcium concentrations in insect Spodoptera frugiperda (Sf9) cells. Insect cells were infected with wild-type baculovirus or baculovirus recombinants that contained an individual rotavirus gene. The cells were harvested at different times postinfection, and the intracellular calcium concentration was measured by using fura-2 as a fluorescent calcium indicator. We found that the concentration of intracellular calcium was increased nearly fivefold in infected Sf9 cells that expressed the nonstructural glycoprotein (NSP4) of group A rotavirus, and this increase in intracellular calcium concentration coincided with NSP4 expression. A similar result was observed in insect cells expressing NSP4 from a group B rotavirus, suggesting the conservation of this function among rotavirus groups. Expression of the other 10 rotavirus proteins or of wild-type baculovirus proteins in Sf9 cells did not significantly increase intracellular calcium levels. These results suggest that the nonstructural glycoprotein NSP4 is responsible for the increase in cytosolic calcium observed in rotavirus-infected cells.

Full text

PDF
251

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Au K. S., Chan W. K., Burns J. W., Estes M. K. Receptor activity of rotavirus nonstructural glycoprotein NS28. J Virol. 1989 Nov;63(11):4553–4562. doi: 10.1128/jvi.63.11.4553-4562.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Au K. S., Mattion N. M., Estes M. K. A subviral particle binding domain on the rotavirus nonstructural glycoprotein NS28. Virology. 1993 Jun;194(2):665–673. doi: 10.1006/viro.1993.1306. [DOI] [PubMed] [Google Scholar]
  3. Brottier P., Nandi P., Bremont M., Cohen J. Bovine rotavirus segment 5 protein expressed in the baculovirus system interacts with zinc and RNA. J Gen Virol. 1992 Aug;73(Pt 8):1931–1938. doi: 10.1099/0022-1317-73-8-1931. [DOI] [PubMed] [Google Scholar]
  4. Burns J. W., Chen D., Estes M. K., Ramig R. F. Biological and immunological characterization of a simian rotavirus SA11 variant with an altered genome segment 4. Virology. 1989 Apr;169(2):427–435. doi: 10.1016/0042-6822(89)90168-2. [DOI] [PubMed] [Google Scholar]
  5. Carafoli E. Intracellular calcium homeostasis. Annu Rev Biochem. 1987;56:395–433. doi: 10.1146/annurev.bi.56.070187.002143. [DOI] [PubMed] [Google Scholar]
  6. Carafoli E. The Ca2+ pump of the plasma membrane. J Biol Chem. 1992 Feb 5;267(4):2115–2118. [PubMed] [Google Scholar]
  7. Chan W. K., Penaranda M. E., Crawford S. E., Estes M. K. Two glycoproteins are produced from the rotavirus neutralization gene. Virology. 1986 Jun;151(2):243–252. doi: 10.1016/0042-6822(86)90046-2. [DOI] [PubMed] [Google Scholar]
  8. Cohen J., Charpilienne A., Chilmonczyk S., Estes M. K. Nucleotide sequence of bovine rotavirus gene 1 and expression of the gene product in baculovirus. Virology. 1989 Jul;171(1):131–140. doi: 10.1016/0042-6822(89)90519-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cohen J., Laporte J., Charpilienne A., Scherrer R. Activation of rotavirus RNA polymerase by calcium chelation. Arch Virol. 1979;60(3-4):177–186. doi: 10.1007/BF01317489. [DOI] [PubMed] [Google Scholar]
  10. Dormitzer P. R., Greenberg H. B. Calcium chelation induces a conformational change in recombinant herpes simplex virus-1-expressed rotavirus VP7. Virology. 1992 Aug;189(2):828–832. doi: 10.1016/0042-6822(92)90616-w. [DOI] [PubMed] [Google Scholar]
  11. Estes M. K., Crawford S. E., Penaranda M. E., Petrie B. L., Burns J. W., Chan W. K., Ericson B., Smith G. E., Summers M. D. Synthesis and immunogenicity of the rotavirus major capsid antigen using a baculovirus expression system. J Virol. 1987 May;61(5):1488–1494. doi: 10.1128/jvi.61.5.1488-1494.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Estes M. K., Graham D. Y., Mason B. B. Proteolytic enhancement of rotavirus infectivity: molecular mechanisms. J Virol. 1981 Sep;39(3):879–888. doi: 10.1128/jvi.39.3.879-888.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Koch G. L., Booth C., Wooding F. B. Dissociation and re-assembly of the endoplasmic reticulum in live cells. J Cell Sci. 1988 Dec;91(Pt 4):511–522. doi: 10.1242/jcs.91.4.511. [DOI] [PubMed] [Google Scholar]
  14. Labbé M., Charpilienne A., Crawford S. E., Estes M. K., Cohen J. Expression of rotavirus VP2 produces empty corelike particles. J Virol. 1991 Jun;65(6):2946–2952. doi: 10.1128/jvi.65.6.2946-2952.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Liu M., Mattion N. M., Estes M. K. Rotavirus VP3 expressed in insect cells possesses guanylyltransferase activity. Virology. 1992 May;188(1):77–84. doi: 10.1016/0042-6822(92)90736-9. [DOI] [PubMed] [Google Scholar]
  16. Luckow V. A., Summers M. D. Signals important for high-level expression of foreign genes in Autographa californica nuclear polyhedrosis virus expression vectors. Virology. 1988 Nov;167(1):56–71. doi: 10.1016/0042-6822(88)90054-2. [DOI] [PubMed] [Google Scholar]
  17. Ludert J. E., Michelangeli F., Gil F., Liprandi F., Esparza J. Penetration and uncoating of rotaviruses in cultured cells. Intervirology. 1987;27(2):95–101. doi: 10.1159/000149726. [DOI] [PubMed] [Google Scholar]
  18. Mackow E. R., Barnett J. W., Chan H., Greenberg H. B. The rhesus rotavirus outer capsid protein VP4 functions as a hemagglutinin and is antigenically conserved when expressed by a baculovirus recombinant. J Virol. 1989 Apr;63(4):1661–1668. doi: 10.1128/jvi.63.4.1661-1668.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mason B. B., Graham D. Y., Estes M. K. Biochemical mapping of the simian rotavirus SA11 genome. J Virol. 1983 May;46(2):413–423. doi: 10.1128/jvi.46.2.413-423.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Matsuura Y., Possee R. D., Overton H. A., Bishop D. H. Baculovirus expression vectors: the requirements for high level expression of proteins, including glycoproteins. J Gen Virol. 1987 May;68(Pt 5):1233–1250. doi: 10.1099/0022-1317-68-5-1233. [DOI] [PubMed] [Google Scholar]
  21. Mattion N. M., Cohen J., Aponte C., Estes M. K. Characterization of an oligomerization domain and RNA-binding properties on rotavirus nonstructural protein NS34. Virology. 1992 Sep;190(1):68–83. doi: 10.1016/0042-6822(92)91193-x. [DOI] [PubMed] [Google Scholar]
  22. Mattion N. M., Mitchell D. B., Both G. W., Estes M. K. Expression of rotavirus proteins encoded by alternative open reading frames of genome segment 11. Virology. 1991 Mar;181(1):295–304. doi: 10.1016/0042-6822(91)90495-w. [DOI] [PubMed] [Google Scholar]
  23. Meyer J. C., Bergmann C. C., Bellamy A. R. Interaction of rotavirus cores with the nonstructural glycoprotein NS28. Virology. 1989 Jul;171(1):98–107. doi: 10.1016/0042-6822(89)90515-1. [DOI] [PubMed] [Google Scholar]
  24. Michelangeli F., Ruiz M. C., del Castillo J. R., Ludert J. E., Liprandi F. Effect of rotavirus infection on intracellular calcium homeostasis in cultured cells. Virology. 1991 Apr;181(2):520–527. doi: 10.1016/0042-6822(91)90884-e. [DOI] [PubMed] [Google Scholar]
  25. Miller C. Ion channel structure and function. Science. 1992 Oct 9;258(5080):240–241. doi: 10.1126/science.1384128. [DOI] [PubMed] [Google Scholar]
  26. Nicotera P., Bellomo G., Orrenius S. Calcium-mediated mechanisms in chemically induced cell death. Annu Rev Pharmacol Toxicol. 1992;32:449–470. doi: 10.1146/annurev.pa.32.040192.002313. [DOI] [PubMed] [Google Scholar]
  27. Nokta M., Eaton D., Steinsland O. S., Albrecht T. Ca2+ responses in cytomegalovirus-infected fibroblasts of human origin. Virology. 1987 Apr;157(2):259–267. doi: 10.1016/0042-6822(87)90268-6. [DOI] [PubMed] [Google Scholar]
  28. Petrie B. L., Estes M. K., Graham D. Y. Effects of tunicamycin on rotavirus morphogenesis and infectivity. J Virol. 1983 Apr;46(1):270–274. doi: 10.1128/jvi.46.1.270-274.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Poruchynsky M. S., Maass D. R., Atkinson P. H. Calcium depletion blocks the maturation of rotavirus by altering the oligomerization of virus-encoded proteins in the ER. J Cell Biol. 1991 Aug;114(4):651–656. doi: 10.1083/jcb.114.4.651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Schilling W. P., Rajan L., Strobl-Jager E. Characterization of the bradykinin-stimulated calcium influx pathway of cultured vascular endothelial cells. Saturability, selectivity, and kinetics. J Biol Chem. 1989 Aug 5;264(22):12838–12848. [PubMed] [Google Scholar]
  31. Shahrabadi M. S., Babiuk L. A., Lee P. W. Further analysis of the role of calcium in rotavirus morphogenesis. Virology. 1987 May;158(1):103–111. doi: 10.1016/0042-6822(87)90242-x. [DOI] [PubMed] [Google Scholar]
  32. Shahrabadi M. S., Lee P. W. Bovine rotavirus maturation is a calcium-dependent process. Virology. 1986 Jul 30;152(2):298–307. doi: 10.1016/0042-6822(86)90133-9. [DOI] [PubMed] [Google Scholar]
  33. Shahrabadi M. S., Lee P. W. Calcium requirement for syncytium formation in HEp-2 cells by respiratory syncytial virus. J Clin Microbiol. 1988 Jan;26(1):139–141. doi: 10.1128/jcm.26.1.139-141.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Shuttleworth T. J., Thompson J. L. Effect of temperature on receptor-activated changes in [Ca2+]i and their determination using fluorescent probes. J Biol Chem. 1991 Jan 25;266(3):1410–1414. [PubMed] [Google Scholar]
  35. Welch S. K., Crawford S. E., Estes M. K. Rotavirus SA11 genome segment 11 protein is a nonstructural phosphoprotein. J Virol. 1989 Sep;63(9):3974–3982. doi: 10.1128/jvi.63.9.3974-3982.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES