Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Sep;81(2):354–358. doi: 10.1038/sj.bjc.6690700

Tumour vascularity is a significant prognostic factor for cervix carcinoma treated with radiotherapy: independence from tumour radiosensitivity

R A Cooper 1, C M L West 1, D P Wilks 1, J P Logue 3, S E Davidson 3, S A Roberts 2, R D Hunter 3
PMCID: PMC2362853  PMID: 10496365

Abstract

The aim of the study was to investigate the relationship between intrinsic radiosensitivity and vascularity in carcinoma of the cervix given radiotherapy, and assess whether more refined prognostic information can be gained by combining the two parameters. A retrospective study was carried out on 74 patients with locally advanced carcinoma of the cervix. Formalin-fixed, paraffin-embedded tumour biopsies were stained with anti-factor VIII using immunohistochemistry. Vascularity was scored using the intra-tumour microvessel density (IMD), or ‘hot-spot’, technique. For the same patients, the measurement of intrinsic radiosensitivity (SF2) had been made previously on the same pretherapy samples. Patients were stratified by the median IMD and SF2 scores. Women with radioresistant and highly vascular tumours had poorer 5-year survival (P = 0.0005, P = 0.035 respectively) and local control (P = 0.012, P = 0.077 respectively) than those with radiosensitive and poorly vascular tumours. No significant correlation was seen between IMD and SF2. Multivariate analysis (including tumour stage and patient age) showed that only SF2 and IMD were significant prognostic factors for survival. Patients with both a radioresistant and highly vascular tumour had a 5-year survival level of 18% compared to 77% for those patients with a radiosensitive and poorly vascularized tumour. Tumour angiogenesis and cellular radiosensitivity are independent prognostic factors for cervix carcinoma treated with radiotherapy. Allowing for tumour radiosensitivity increases the prognostic significance of vascularity measurements in cervix tumours. © 1999 Cancer Research Campaign

Keywords: angiogenesis, SF2, predictive assays

Full Text

The Full Text of this article is available as a PDF (63.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Awwad H. K., el Naggar M., Mocktar N., Barsoum M. Intercapillary distance measurement as an indicator of hypoxia in carcinoma of the cervix uteri. Int J Radiat Oncol Biol Phys. 1986 Aug;12(8):1329–1333. doi: 10.1016/0360-3016(86)90165-3. [DOI] [PubMed] [Google Scholar]
  2. Bristow R. G., Benchimol S., Hill R. P. The p53 gene as a modifier of intrinsic radiosensitivity: implications for radiotherapy. Radiother Oncol. 1996 Sep;40(3):197–223. doi: 10.1016/0167-8140(96)01806-3. [DOI] [PubMed] [Google Scholar]
  3. Cooper R. A., Wilks D. P., Logue J. P., Davidson S. E., Hunter R. D., Roberts S. A., West C. M. High tumor angiogenesis is associated with poorer survival in carcinoma of the cervix treated with radiotherapy. Clin Cancer Res. 1998 Nov;4(11):2795–2800. [PubMed] [Google Scholar]
  4. Dameron K. M., Volpert O. V., Tainsky M. A., Bouck N. Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science. 1994 Sep 9;265(5178):1582–1584. doi: 10.1126/science.7521539. [DOI] [PubMed] [Google Scholar]
  5. Dinh T. V., Hannigan E. V., Smith E. R., Hove M. J., Chopra V., To T. Tumor angiogenesis as a predictor of recurrence in stage Ib squamous cell carcinoma of the cervix. Obstet Gynecol. 1996 May;87(5 Pt 1):751–754. doi: 10.1016/0029-7844(96)00039-7. [DOI] [PubMed] [Google Scholar]
  6. Folkman J. Tumor angiogenesis and tissue factor. Nat Med. 1996 Feb;2(2):167–168. doi: 10.1038/nm0296-167. [DOI] [PubMed] [Google Scholar]
  7. Folkman J. What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst. 1990 Jan 3;82(1):4–6. doi: 10.1093/jnci/82.1.4. [DOI] [PubMed] [Google Scholar]
  8. Hanahan D., Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 1996 Aug 9;86(3):353–364. doi: 10.1016/s0092-8674(00)80108-7. [DOI] [PubMed] [Google Scholar]
  9. Hockel M., Schlenger K., Aral B., Mitze M., Schaffer U., Vaupel P. Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res. 1996 Oct 1;56(19):4509–4515. [PubMed] [Google Scholar]
  10. Kapp D. S., Giaccia A. J. New directions for radiation biology research in cancer of the uterine cervix. J Natl Cancer Inst Monogr. 1996;(21):131–139. [PubMed] [Google Scholar]
  11. Kolstad P. Intercapillary distance, oxygen tension and local recurrence in cervix cancer. Scand J Clin Lab Invest Suppl. 1968;106:145–157. [PubMed] [Google Scholar]
  12. Kuwabara K., Ogawa S., Matsumoto M., Koga S., Clauss M., Pinsky D. J., Lyn P., Leavy J., Witte L., Joseph-Silverstein J. Hypoxia-mediated induction of acidic/basic fibroblast growth factor and platelet-derived growth factor in mononuclear phagocytes stimulates growth of hypoxic endothelial cells. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4606–4610. doi: 10.1073/pnas.92.10.4606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lindegaard J. C., Overgaard J., Bentzen S. M., Pedersen D. Is there a radiobiologic basis for improving the treatment of advanced stage cervical cancer? J Natl Cancer Inst Monogr. 1996;(21):105–112. [PubMed] [Google Scholar]
  14. Rak J., Kerbel R. S. bFGF and tumor angiogenesis--back in the limelight? Nat Med. 1997 Oct;3(10):1083–1084. doi: 10.1038/nm1097-1083. [DOI] [PubMed] [Google Scholar]
  15. Shweiki D., Itin A., Soffer D., Keshet E. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature. 1992 Oct 29;359(6398):843–845. doi: 10.1038/359843a0. [DOI] [PubMed] [Google Scholar]
  16. Siracká E., Siracký J., Pappová N., Révész L. Vascularization and radiocurability in cancer of the uterine cervix. A retrospective study. Neoplasma. 1982;29(2):183–188. [PubMed] [Google Scholar]
  17. Tucker S. L., Thames H. D., Jr The effect of patient-to-patient variability on the accuracy of predictive assays of tumor response to radiotherapy: a theoretical evaluation. Int J Radiat Oncol Biol Phys. 1989 Jul;17(1):145–157. doi: 10.1016/0360-3016(89)90382-9. [DOI] [PubMed] [Google Scholar]
  18. Vermeulen P. B., Gasparini G., Fox S. B., Toi M., Martin L., McCulloch P., Pezzella F., Viale G., Weidner N., Harris A. L. Quantification of angiogenesis in solid human tumours: an international consensus on the methodology and criteria of evaluation. Eur J Cancer. 1996 Dec;32A(14):2474–2484. doi: 10.1016/s0959-8049(96)00379-6. [DOI] [PubMed] [Google Scholar]
  19. Weidner N., Folkman J. Tumoral vascularity as a prognostic factor in cancer. Important Adv Oncol. 1996:167–190. [PubMed] [Google Scholar]
  20. Weidner N., Semple J. P., Welch W. R., Folkman J. Tumor angiogenesis and metastasis--correlation in invasive breast carcinoma. N Engl J Med. 1991 Jan 3;324(1):1–8. doi: 10.1056/NEJM199101033240101. [DOI] [PubMed] [Google Scholar]
  21. West C. M., Davidson S. E., Roberts S. A., Hunter R. D. Intrinsic radiosensitivity and prediction of patient response to radiotherapy for carcinoma of the cervix. Br J Cancer. 1993 Oct;68(4):819–823. doi: 10.1038/bjc.1993.434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. West C. M., Davidson S. E., Roberts S. A., Hunter R. D. The independence of intrinsic radiosensitivity as a prognostic factor for patient response to radiotherapy of carcinoma of the cervix. Br J Cancer. 1997;76(9):1184–1190. doi: 10.1038/bjc.1997.531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Wiggins D. L., Granai C. O., Steinhoff M. M., Calabresi P. Tumor angiogenesis as a prognostic factor in cervical carcinoma. Gynecol Oncol. 1995 Mar;56(3):353–356. doi: 10.1006/gyno.1995.1062. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES