Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Sep;81(2):219–224. doi: 10.1038/sj.bjc.6690680

Ca2+-induced changes in energy metabolism and viability of melanoma cells

L Glass-Marmor 1, J Penso 1, R Beitner 1
PMCID: PMC2362860  PMID: 10496345

Abstract

Cancer cells are characterized by a high rate of glycolysis, which is their primary energy source. We show here that a rise in intracellular-free calcium ion (Ca2+), induced by Ca2+-ionophore A23187, exerted a deleterious effect on glycolysis and viability of B16 melanoma cells. Ca2+-ionophore caused a dose-dependent detachment of phosphofructokinase (EC 2.7.1.11), one of the key enzymes of glycolysis, from cytoskeleton. It also induced a decrease in the levels of glucose 1,6-bisphosphate and fructose 1,6-bisphosphate, the two stimulatory signal molecules of glycolysis. All these changes occurred at lower concentrations of the drug than those required to induce a reduction in viability of melanoma cells. We also found that low concentrations of Ca2+-ionophore induced an increase in adenosine 5′-triphosphate (ATP), which most probably resulted from the increase in mitochondrial-bound hexokinase, which reflects a defence mechanism. This mechanism can no longer operate at high concentrations of the Ca2+-ionophore, which causes a decrease in mitochondrial and cytosolic hexokinase, leading to a drastic fall in ATP and melanoma cell death. The present results suggest that drugs which are capable of inducing accumulation of intracellular-free Ca2+ in melanoma cells would cause a reduction in energy-producing systems, leading to melanoma cell death. © 1999 Cancer Research Campaign

Keywords: Melanoma; Ca2+; glycolysis; phosphofructokinase; hexokinase; glucose 1,6-bisphosphate

Full Text

The Full Text of this article is available as a PDF (104.6 KB).

Footnotes

This paper is part of the PhD thesis of LG-M to be submitted to the Senate of Bar-Ilan University, Ramat Gan, Israel.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams V., Griffin L., Towbin J., Gelb B., Worley K., McCabe E. R. Porin interaction with hexokinase and glycerol kinase: metabolic microcompartmentation at the outer mitochondrial membrane. Biochem Med Metab Biol. 1991 Jun;45(3):271–291. doi: 10.1016/0885-4505(91)90032-g. [DOI] [PubMed] [Google Scholar]
  2. Arnold H., Pette D. Binding of glycolytic enzymes to structure proteins of the muscle. Eur J Biochem. 1968 Nov;6(2):163–171. doi: 10.1111/j.1432-1033.1968.tb00434.x. [DOI] [PubMed] [Google Scholar]
  3. Arora K. K., Pedersen P. L. Functional significance of mitochondrial bound hexokinase in tumor cell metabolism. Evidence for preferential phosphorylation of glucose by intramitochondrially generated ATP. J Biol Chem. 1988 Nov 25;263(33):17422–17428. [PubMed] [Google Scholar]
  4. Bassukevitz Y., Chen-Zion M., Beitner R. Ca(2+)-ionophore A23187 and the Ca(2+)-mobilizing hormones serotonin, vasopressin, and bradykinin increase mitochondrially bound hexokinase in muscle. Biochem Med Metab Biol. 1992 Apr;47(2):181–188. doi: 10.1016/0885-4505(92)90022-q. [DOI] [PubMed] [Google Scholar]
  5. Beckner M. E., Stracke M. L., Liotta L. A., Schiffmann E. Glycolysis as primary energy source in tumor cell chemotaxis. J Natl Cancer Inst. 1990 Dec 5;82(23):1836–1840. doi: 10.1093/jnci/82.23.1836. [DOI] [PubMed] [Google Scholar]
  6. Beitner R. Calmodulin antagonists and cell energy metabolism in health and disease. Mol Genet Metab. 1998 Jul;64(3):161–168. doi: 10.1006/mgme.1998.2691. [DOI] [PubMed] [Google Scholar]
  7. Beitner R. Control of glycolytic enzymes through binding to cell structures and by glucose-1,6-bisphosphate under different conditions. The role of Ca2+ and calmodulin. Int J Biochem. 1993 Mar;25(3):297–305. doi: 10.1016/0020-711x(93)90616-m. [DOI] [PubMed] [Google Scholar]
  8. Beitner R. Control of levels of glucose 1,6-bisphosphate. Int J Biochem. 1984;16(6):579–585. doi: 10.1016/0020-711x(84)90025-9. [DOI] [PubMed] [Google Scholar]
  9. Beitner R., Haberman S., Nordenberg J., Cohen T. J. The levels of cyclic GMP and glucose 1,6-diphosphate, and the activity of phosphofructokinase, in muscle from normal and dystrophic mice. Biochim Biophys Acta. 1978 Sep 6;542(3):537–541. doi: 10.1016/0304-4165(78)90383-5. [DOI] [PubMed] [Google Scholar]
  10. Beitner R., Lilling G. Treatment of muscle damage, induced by high intracellular Ca2+, with calmodulin antagonists. Gen Pharmacol. 1993 Jul;24(4):847–855. doi: 10.1016/0306-3623(93)90158-t. [DOI] [PubMed] [Google Scholar]
  11. Beitner R., Nordenberg J., Cohen T. J. Correlation between the levels of glucose 1,6-diphosphate and the activities of phosphofructokinase, phosphoglucomutase and hexokinase, in skeletal and heart muscles from rats of different ages. Int J Biochem. 1979;10(7):603–608. doi: 10.1016/0020-711x(79)90022-3. [DOI] [PubMed] [Google Scholar]
  12. Beitner R. Regulation of carbohydrate metabolism by glucose 1,6-bisphosphate in extrahepatic tissues; comparison with fructose 2,6-bisphosphate. Int J Biochem. 1990;22(6):553–557. doi: 10.1016/0020-711x(90)90030-7. [DOI] [PubMed] [Google Scholar]
  13. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  14. Brdiczka D. Contact sites between mitochondrial envelope membranes. Structure and function in energy- and protein-transfer. Biochim Biophys Acta. 1991 Nov 13;1071(3):291–312. doi: 10.1016/0304-4157(91)90018-r. [DOI] [PubMed] [Google Scholar]
  15. Chen-Zion M., Lilling G., Beitner R. The dual effects of Ca2+ on binding of the glycolytic enzymes, phosphofructokinase and aldolase, to muscle cytoskeleton. Biochem Med Metab Biol. 1993 Apr;49(2):173–181. doi: 10.1006/bmmb.1993.1020. [DOI] [PubMed] [Google Scholar]
  16. Denton R. M., McCormack J. G. Ca2+ as a second messenger within mitochondria of the heart and other tissues. Annu Rev Physiol. 1990;52:451–466. doi: 10.1146/annurev.ph.52.030190.002315. [DOI] [PubMed] [Google Scholar]
  17. Fanciulli M., Paggi M. G., Bruno T., Del Carlo C., Bonetto F., Gentile F. P., Floridi A. Glycolysis and growth rate in normal and in hexokinase-transfected NIH-3T3 cells. Oncol Res. 1994;6(9):405–409. [PubMed] [Google Scholar]
  18. Fiechter A., Gmünder F. K. Metabolic control of glucose degradation in yeast and tumor cells. Adv Biochem Eng Biotechnol. 1989;39:1–28. doi: 10.1007/BFb0051950. [DOI] [PubMed] [Google Scholar]
  19. Glass-Marmor L., Beitner R. Detachment of glycolytic enzymes from cytoskeleton of melanoma cells induced by calmodulin antagonists. Eur J Pharmacol. 1997 Jun 11;328(2-3):241–248. doi: 10.1016/s0014-2999(97)83051-8. [DOI] [PubMed] [Google Scholar]
  20. Glass-Marmor L., Morgenstern H., Beitner R. Calmodulin antagonists decrease glucose 1,6-bisphosphate, fructose 1,6-bisphosphate, ATP and viability of melanoma cells. Eur J Pharmacol. 1996 Oct 17;313(3):265–271. doi: 10.1016/0014-2999(96)00526-2. [DOI] [PubMed] [Google Scholar]
  21. Golshani-Hebroni S. G., Bessman S. P. Hexokinase binding to mitochondria: a basis for proliferative energy metabolism. J Bioenerg Biomembr. 1997 Aug;29(4):331–338. doi: 10.1023/a:1022442629543. [DOI] [PubMed] [Google Scholar]
  22. Gots R. E., Bessman S. P. The functional compartmentation of mitochondrial hexokinase. Arch Biochem Biophys. 1974 Jul;163(1):7–14. doi: 10.1016/0003-9861(74)90448-2. [DOI] [PubMed] [Google Scholar]
  23. Gots R. E., Gorin F. A., Bessman S. P. Kinetic enhancement of bound hexokinase activity by mitochondrial respiration. Biochem Biophys Res Commun. 1972 Dec 4;49(5):1249–1255. doi: 10.1016/0006-291x(72)90602-x. [DOI] [PubMed] [Google Scholar]
  24. Greiner E. F., Guppy M., Brand K. Glucose is essential for proliferation and the glycolytic enzyme induction that provokes a transition to glycolytic energy production. J Biol Chem. 1994 Dec 16;269(50):31484–31490. [PubMed] [Google Scholar]
  25. Hill S. E., Bleehen S. S., MacNeil S. I alpha-25-dihydroxyvitamin D3 increases intracellular free calcium in murine B16 melanoma. Br J Dermatol. 1989 Jan;120(1):21–30. doi: 10.1111/j.1365-2133.1989.tb07761.x. [DOI] [PubMed] [Google Scholar]
  26. Ichas F., Mazat J. P. From calcium signaling to cell death: two conformations for the mitochondrial permeability transition pore. Switching from low- to high-conductance state. Biochim Biophys Acta. 1998 Aug 10;1366(1-2):33–50. doi: 10.1016/s0005-2728(98)00119-4. [DOI] [PubMed] [Google Scholar]
  27. Kottke M., Adam V., Riesinger I., Bremm G., Bosch W., Brdiczka D., Sandri G., Panfili E. Mitochondrial boundary membrane contact sites in brain: points of hexokinase and creatine kinase location, and control of Ca2+ transport. Biochim Biophys Acta. 1988 Aug 17;935(1):87–102. doi: 10.1016/0005-2728(88)90111-9. [DOI] [PubMed] [Google Scholar]
  28. LOWRY O. H., PASSONNEAU J. V., HASSELBERGER F. X., SCHULZ D. W. EFFECT OF ISCHEMIA ON KNOWN SUBSTRATES AND COFACTORS OF THE GLYCOLYTIC PATHWAY IN BRAIN. J Biol Chem. 1964 Jan;239:18–30. [PubMed] [Google Scholar]
  29. Lilling G., Beitner R. Decrease in cytoskeleton-bound phosphofructokinase in muscle induced by high intracellular calcium, serotonin and phospholipase A2 in vivo. Int J Biochem. 1990;22(8):857–863. doi: 10.1016/0020-711x(90)90289-f. [DOI] [PubMed] [Google Scholar]
  30. McCormack J. G., Denton R. M. The role of mitochondrial Ca2+ transport and matrix Ca2+ in signal transduction in mammalian tissues. Biochim Biophys Acta. 1990 Jul 25;1018(2-3):287–291. doi: 10.1016/0005-2728(90)90269-a. [DOI] [PubMed] [Google Scholar]
  31. Passonneau J. V., Lowry O. H., Schulz D. W., Brown J. G. Glucose 1,6-diphosphate formation by phosphoglucomutase in mammalian tissues. J Biol Chem. 1969 Feb 10;244(3):902–909. [PubMed] [Google Scholar]
  32. Penso J., Beitner R. Clotrimazole and bifonazole detach hexokinase from mitochondria of melanoma cells. Eur J Pharmacol. 1998 Jan 19;342(1):113–117. doi: 10.1016/s0014-2999(97)01507-0. [DOI] [PubMed] [Google Scholar]
  33. Rao K. M., Cohen H. J. Actin cytoskeletal network in aging and cancer. Mutat Res. 1991 Mar-Nov;256(2-6):139–148. doi: 10.1016/0921-8734(91)90007-x. [DOI] [PubMed] [Google Scholar]
  34. Viitanen P. V., Geiger P. J., Erickson-Viitanen S., Bessman S. P. Evidence for functional hexokinase compartmentation in rat skeletal muscle mitochondria. J Biol Chem. 1984 Aug 10;259(15):9679–9686. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES