Abstract
Cancer cells are characterized by a high rate of glycolysis, which is their primary energy source. We show here that a rise in intracellular-free calcium ion (Ca2+), induced by Ca2+-ionophore A23187, exerted a deleterious effect on glycolysis and viability of B16 melanoma cells. Ca2+-ionophore caused a dose-dependent detachment of phosphofructokinase (EC 2.7.1.11), one of the key enzymes of glycolysis, from cytoskeleton. It also induced a decrease in the levels of glucose 1,6-bisphosphate and fructose 1,6-bisphosphate, the two stimulatory signal molecules of glycolysis. All these changes occurred at lower concentrations of the drug than those required to induce a reduction in viability of melanoma cells. We also found that low concentrations of Ca2+-ionophore induced an increase in adenosine 5′-triphosphate (ATP), which most probably resulted from the increase in mitochondrial-bound hexokinase, which reflects a defence mechanism. This mechanism can no longer operate at high concentrations of the Ca2+-ionophore, which causes a decrease in mitochondrial and cytosolic hexokinase, leading to a drastic fall in ATP and melanoma cell death. The present results suggest that drugs which are capable of inducing accumulation of intracellular-free Ca2+ in melanoma cells would cause a reduction in energy-producing systems, leading to melanoma cell death. © 1999 Cancer Research Campaign
Keywords: Melanoma; Ca2+; glycolysis; phosphofructokinase; hexokinase; glucose 1,6-bisphosphate
Full Text
The Full Text of this article is available as a PDF (104.6 KB).
Footnotes
This paper is part of the PhD thesis of LG-M to be submitted to the Senate of Bar-Ilan University, Ramat Gan, Israel.
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams V., Griffin L., Towbin J., Gelb B., Worley K., McCabe E. R. Porin interaction with hexokinase and glycerol kinase: metabolic microcompartmentation at the outer mitochondrial membrane. Biochem Med Metab Biol. 1991 Jun;45(3):271–291. doi: 10.1016/0885-4505(91)90032-g. [DOI] [PubMed] [Google Scholar]
- Arnold H., Pette D. Binding of glycolytic enzymes to structure proteins of the muscle. Eur J Biochem. 1968 Nov;6(2):163–171. doi: 10.1111/j.1432-1033.1968.tb00434.x. [DOI] [PubMed] [Google Scholar]
- Arora K. K., Pedersen P. L. Functional significance of mitochondrial bound hexokinase in tumor cell metabolism. Evidence for preferential phosphorylation of glucose by intramitochondrially generated ATP. J Biol Chem. 1988 Nov 25;263(33):17422–17428. [PubMed] [Google Scholar]
- Bassukevitz Y., Chen-Zion M., Beitner R. Ca(2+)-ionophore A23187 and the Ca(2+)-mobilizing hormones serotonin, vasopressin, and bradykinin increase mitochondrially bound hexokinase in muscle. Biochem Med Metab Biol. 1992 Apr;47(2):181–188. doi: 10.1016/0885-4505(92)90022-q. [DOI] [PubMed] [Google Scholar]
- Beckner M. E., Stracke M. L., Liotta L. A., Schiffmann E. Glycolysis as primary energy source in tumor cell chemotaxis. J Natl Cancer Inst. 1990 Dec 5;82(23):1836–1840. doi: 10.1093/jnci/82.23.1836. [DOI] [PubMed] [Google Scholar]
- Beitner R. Calmodulin antagonists and cell energy metabolism in health and disease. Mol Genet Metab. 1998 Jul;64(3):161–168. doi: 10.1006/mgme.1998.2691. [DOI] [PubMed] [Google Scholar]
- Beitner R. Control of glycolytic enzymes through binding to cell structures and by glucose-1,6-bisphosphate under different conditions. The role of Ca2+ and calmodulin. Int J Biochem. 1993 Mar;25(3):297–305. doi: 10.1016/0020-711x(93)90616-m. [DOI] [PubMed] [Google Scholar]
- Beitner R. Control of levels of glucose 1,6-bisphosphate. Int J Biochem. 1984;16(6):579–585. doi: 10.1016/0020-711x(84)90025-9. [DOI] [PubMed] [Google Scholar]
- Beitner R., Haberman S., Nordenberg J., Cohen T. J. The levels of cyclic GMP and glucose 1,6-diphosphate, and the activity of phosphofructokinase, in muscle from normal and dystrophic mice. Biochim Biophys Acta. 1978 Sep 6;542(3):537–541. doi: 10.1016/0304-4165(78)90383-5. [DOI] [PubMed] [Google Scholar]
- Beitner R., Lilling G. Treatment of muscle damage, induced by high intracellular Ca2+, with calmodulin antagonists. Gen Pharmacol. 1993 Jul;24(4):847–855. doi: 10.1016/0306-3623(93)90158-t. [DOI] [PubMed] [Google Scholar]
- Beitner R., Nordenberg J., Cohen T. J. Correlation between the levels of glucose 1,6-diphosphate and the activities of phosphofructokinase, phosphoglucomutase and hexokinase, in skeletal and heart muscles from rats of different ages. Int J Biochem. 1979;10(7):603–608. doi: 10.1016/0020-711x(79)90022-3. [DOI] [PubMed] [Google Scholar]
- Beitner R. Regulation of carbohydrate metabolism by glucose 1,6-bisphosphate in extrahepatic tissues; comparison with fructose 2,6-bisphosphate. Int J Biochem. 1990;22(6):553–557. doi: 10.1016/0020-711x(90)90030-7. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Brdiczka D. Contact sites between mitochondrial envelope membranes. Structure and function in energy- and protein-transfer. Biochim Biophys Acta. 1991 Nov 13;1071(3):291–312. doi: 10.1016/0304-4157(91)90018-r. [DOI] [PubMed] [Google Scholar]
- Chen-Zion M., Lilling G., Beitner R. The dual effects of Ca2+ on binding of the glycolytic enzymes, phosphofructokinase and aldolase, to muscle cytoskeleton. Biochem Med Metab Biol. 1993 Apr;49(2):173–181. doi: 10.1006/bmmb.1993.1020. [DOI] [PubMed] [Google Scholar]
- Denton R. M., McCormack J. G. Ca2+ as a second messenger within mitochondria of the heart and other tissues. Annu Rev Physiol. 1990;52:451–466. doi: 10.1146/annurev.ph.52.030190.002315. [DOI] [PubMed] [Google Scholar]
- Fanciulli M., Paggi M. G., Bruno T., Del Carlo C., Bonetto F., Gentile F. P., Floridi A. Glycolysis and growth rate in normal and in hexokinase-transfected NIH-3T3 cells. Oncol Res. 1994;6(9):405–409. [PubMed] [Google Scholar]
- Fiechter A., Gmünder F. K. Metabolic control of glucose degradation in yeast and tumor cells. Adv Biochem Eng Biotechnol. 1989;39:1–28. doi: 10.1007/BFb0051950. [DOI] [PubMed] [Google Scholar]
- Glass-Marmor L., Beitner R. Detachment of glycolytic enzymes from cytoskeleton of melanoma cells induced by calmodulin antagonists. Eur J Pharmacol. 1997 Jun 11;328(2-3):241–248. doi: 10.1016/s0014-2999(97)83051-8. [DOI] [PubMed] [Google Scholar]
- Glass-Marmor L., Morgenstern H., Beitner R. Calmodulin antagonists decrease glucose 1,6-bisphosphate, fructose 1,6-bisphosphate, ATP and viability of melanoma cells. Eur J Pharmacol. 1996 Oct 17;313(3):265–271. doi: 10.1016/0014-2999(96)00526-2. [DOI] [PubMed] [Google Scholar]
- Golshani-Hebroni S. G., Bessman S. P. Hexokinase binding to mitochondria: a basis for proliferative energy metabolism. J Bioenerg Biomembr. 1997 Aug;29(4):331–338. doi: 10.1023/a:1022442629543. [DOI] [PubMed] [Google Scholar]
- Gots R. E., Bessman S. P. The functional compartmentation of mitochondrial hexokinase. Arch Biochem Biophys. 1974 Jul;163(1):7–14. doi: 10.1016/0003-9861(74)90448-2. [DOI] [PubMed] [Google Scholar]
- Gots R. E., Gorin F. A., Bessman S. P. Kinetic enhancement of bound hexokinase activity by mitochondrial respiration. Biochem Biophys Res Commun. 1972 Dec 4;49(5):1249–1255. doi: 10.1016/0006-291x(72)90602-x. [DOI] [PubMed] [Google Scholar]
- Greiner E. F., Guppy M., Brand K. Glucose is essential for proliferation and the glycolytic enzyme induction that provokes a transition to glycolytic energy production. J Biol Chem. 1994 Dec 16;269(50):31484–31490. [PubMed] [Google Scholar]
- Hill S. E., Bleehen S. S., MacNeil S. I alpha-25-dihydroxyvitamin D3 increases intracellular free calcium in murine B16 melanoma. Br J Dermatol. 1989 Jan;120(1):21–30. doi: 10.1111/j.1365-2133.1989.tb07761.x. [DOI] [PubMed] [Google Scholar]
- Ichas F., Mazat J. P. From calcium signaling to cell death: two conformations for the mitochondrial permeability transition pore. Switching from low- to high-conductance state. Biochim Biophys Acta. 1998 Aug 10;1366(1-2):33–50. doi: 10.1016/s0005-2728(98)00119-4. [DOI] [PubMed] [Google Scholar]
- Kottke M., Adam V., Riesinger I., Bremm G., Bosch W., Brdiczka D., Sandri G., Panfili E. Mitochondrial boundary membrane contact sites in brain: points of hexokinase and creatine kinase location, and control of Ca2+ transport. Biochim Biophys Acta. 1988 Aug 17;935(1):87–102. doi: 10.1016/0005-2728(88)90111-9. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., PASSONNEAU J. V., HASSELBERGER F. X., SCHULZ D. W. EFFECT OF ISCHEMIA ON KNOWN SUBSTRATES AND COFACTORS OF THE GLYCOLYTIC PATHWAY IN BRAIN. J Biol Chem. 1964 Jan;239:18–30. [PubMed] [Google Scholar]
- Lilling G., Beitner R. Decrease in cytoskeleton-bound phosphofructokinase in muscle induced by high intracellular calcium, serotonin and phospholipase A2 in vivo. Int J Biochem. 1990;22(8):857–863. doi: 10.1016/0020-711x(90)90289-f. [DOI] [PubMed] [Google Scholar]
- McCormack J. G., Denton R. M. The role of mitochondrial Ca2+ transport and matrix Ca2+ in signal transduction in mammalian tissues. Biochim Biophys Acta. 1990 Jul 25;1018(2-3):287–291. doi: 10.1016/0005-2728(90)90269-a. [DOI] [PubMed] [Google Scholar]
- Passonneau J. V., Lowry O. H., Schulz D. W., Brown J. G. Glucose 1,6-diphosphate formation by phosphoglucomutase in mammalian tissues. J Biol Chem. 1969 Feb 10;244(3):902–909. [PubMed] [Google Scholar]
- Penso J., Beitner R. Clotrimazole and bifonazole detach hexokinase from mitochondria of melanoma cells. Eur J Pharmacol. 1998 Jan 19;342(1):113–117. doi: 10.1016/s0014-2999(97)01507-0. [DOI] [PubMed] [Google Scholar]
- Rao K. M., Cohen H. J. Actin cytoskeletal network in aging and cancer. Mutat Res. 1991 Mar-Nov;256(2-6):139–148. doi: 10.1016/0921-8734(91)90007-x. [DOI] [PubMed] [Google Scholar]
- Viitanen P. V., Geiger P. J., Erickson-Viitanen S., Bessman S. P. Evidence for functional hexokinase compartmentation in rat skeletal muscle mitochondria. J Biol Chem. 1984 Aug 10;259(15):9679–9686. [PubMed] [Google Scholar]