Skip to main content

Some NLM-NCBI services and products are experiencing heavy traffic, which may affect performance and availability. We apologize for the inconvenience and appreciate your patience. For assistance, please contact our Help Desk at info@ncbi.nlm.nih.gov.

British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Sep;81(2):261–268. doi: 10.1038/sj.bjc.6690686

In vivo fluorescence imaging of the transport of charged chlorine6 conjugates in a rat orthotopic prostate tumour

M R Hamblin 1, M Rajadhyaksha 1, T Momma 1,1, N S Soukos 1, T Hasan 1
PMCID: PMC2362866  PMID: 10496351

Abstract

Polymeric drug conjugates are used in cancer therapy and, varying their molecular size and charge, will affect their in vivo transport and extravasation in tumours. Partitioning between tumour vasculature and tumour tissue will be of particular significance in the case of photosensitizer conjugates used in photodynamic therapy, where this partitioning can lead to different therapeutic effects. Poly-l-lysine chlorine6 conjugates (derived from polymers of averageMr 5000 and 25 000) were prepared both in a cationic state and by poly-succinylation in an anionic state. A fluorescence scanning laser microscope was used to follow the pharmacokinetics of these conjugates in vivo in an orthotopic rat prostate cancer model obtained with MatLyLu cells. Fluorescence was excited with the 454–528 nm group of lines of an argon laser and a 570 nm long pass filter used to isolate the emission. Results showed that the conjugates initially bound to the walls of the vasculature, before extravasating into the tissue, and eventually increasing in fluorescence. The anionic conjugates produced tissue fluorescence faster than the cationic ones, and surprisingly, the largerMr conjugates produced tissue fluorescence faster than the smaller ones with the same charge. These results are consistent with differences in aggregation state between conjugates. © 1999 Cancer Research Campaign

Keywords: photosensitizer, pharmacokinetics, photodynamic therapy, tumour vasculature, polymer conjugate

Full Text

The Full Text of this article is available as a PDF (196.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachor R., Shea C. R., Gillies R., Hasan T. Photosensitized destruction of human bladder carcinoma cells treated with chlorin e6-conjugated microspheres. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1580–1584. doi: 10.1073/pnas.88.4.1580. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baldwin A. L., Chien S. Endothelial transport of anionized and cationized ferritin in the rabbit thoracic aorta and vasa vasorum. Arteriosclerosis. 1984 Jul-Aug;4(4):372–382. doi: 10.1161/01.atv.4.4.372. [DOI] [PubMed] [Google Scholar]
  3. Bellnier D. A., Henderson B. W., Pandey R. K., Potter W. R., Dougherty T. J. Murine pharmacokinetics and antitumor efficacy of the photodynamic sensitizer 2-[1-hexyloxyethyl]-2-devinyl pyropheophorbide-a. J Photochem Photobiol B. 1993 Sep;20(1):55–61. doi: 10.1016/1011-1344(93)80131-r. [DOI] [PubMed] [Google Scholar]
  4. Bernstein E. F., Friauf W. S., Smith P. D., Cole J. W., Solomon R. E., Fessler J. F., Thomas G. F., Black C., Russo A. Transcutaneous determination of tissue dihematoporphyrin ether content. A device to optimize photodynamic therapy. Arch Dermatol. 1991 Dec;127(12):1794–1798. [PubMed] [Google Scholar]
  5. Bottiroli G., Croce A. C., Vaghi P. Equilibrium among hematoporphyrin derivative components--II. Effect of esterase activity. Photochem Photobiol. 1990 Feb;51(2):169–174. doi: 10.1111/j.1751-1097.1990.tb01699.x. [DOI] [PubMed] [Google Scholar]
  6. Boyle R. W., Dolphin D. Structure and biodistribution relationships of photodynamic sensitizers. Photochem Photobiol. 1996 Sep;64(3):469–485. doi: 10.1111/j.1751-1097.1996.tb03093.x. [DOI] [PubMed] [Google Scholar]
  7. Butler T. P., Grantham F. H., Gullino P. M. Bulk transfer of fluid in the interstitial compartment of mammary tumors. Cancer Res. 1975 Nov;35(11 Pt 1):3084–3088. [PubMed] [Google Scholar]
  8. Calzavara-Pinton P. G., Szeimies R. M., Ortel B., Zane C. Photodynamic therapy with systemic administration of photosensitizers in dermatology. J Photochem Photobiol B. 1996 Nov;36(2):225–231. doi: 10.1016/s1011-1344(96)07377-0. [DOI] [PubMed] [Google Scholar]
  9. Cuomo V., Jori G., Rihter B., Kenney M. E., Rodgers M. A. Liposome-delivered Si(IV)-naphthalocyanine as a photodynamic sensitiser for experimental tumours: pharmacokinetic and phototherapeutic studies. Br J Cancer. 1990 Dec;62(6):966–970. doi: 10.1038/bjc.1990.418. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Davis N., Liu D., Jain A. K., Jiang S. Y., Jiang F., Richter A., Levy J. G. Modified polyvinyl alcohol-benzoporphyrin derivative conjugates as phototoxic agents. Photochem Photobiol. 1993 Apr;57(4):641–647. doi: 10.1111/j.1751-1097.1993.tb02930.x. [DOI] [PubMed] [Google Scholar]
  11. Duncan R., Spreafico F. Polymer conjugates. Pharmacokinetic considerations for design and development. Clin Pharmacokinet. 1994 Oct;27(4):290–306. doi: 10.2165/00003088-199427040-00004. [DOI] [PubMed] [Google Scholar]
  12. Duska L. R., Hamblin M. R., Bamberg M. P., Hasan T. Biodistribution of charged F(ab')2 photoimmunoconjugates in a xenograft model of ovarian cancer. Br J Cancer. 1997;75(6):837–844. doi: 10.1038/bjc.1997.149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dvorak A. M., Kohn S., Morgan E. S., Fox P., Nagy J. A., Dvorak H. F. The vesiculo-vacuolar organelle (VVO): a distinct endothelial cell structure that provides a transcellular pathway for macromolecular extravasation. J Leukoc Biol. 1996 Jan;59(1):100–115. [PubMed] [Google Scholar]
  14. Dvorak H. F., Nagy J. A., Dvorak A. M. Structure of solid tumors and their vasculature: implications for therapy with monoclonal antibodies. Cancer Cells. 1991 Mar;3(3):77–85. [PubMed] [Google Scholar]
  15. Dvorak H. F., Nagy J. A., Dvorak J. T., Dvorak A. M. Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am J Pathol. 1988 Oct;133(1):95–109. [PMC free article] [PubMed] [Google Scholar]
  16. Dvorak H. F. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 1986 Dec 25;315(26):1650–1659. doi: 10.1056/NEJM198612253152606. [DOI] [PubMed] [Google Scholar]
  17. Edgell C. J., McDonald C. C., Graham J. B. Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proc Natl Acad Sci U S A. 1983 Jun;80(12):3734–3737. doi: 10.1073/pnas.80.12.3734. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Frisoli J. K., Tudor E. G., Flotte T. J., Hasan T., Deutsch T. F., Schomacker K. T. Pharmacokinetics of a fluorescent drug using laser-induced fluorescence. Cancer Res. 1993 Dec 15;53(24):5954–5961. [PubMed] [Google Scholar]
  19. Fukumura D., Yuan F., Monsky W. L., Chen Y., Jain R. K. Effect of host microenvironment on the microcirculation of human colon adenocarcinoma. Am J Pathol. 1997 Sep;151(3):679–688. [PMC free article] [PubMed] [Google Scholar]
  20. Ghinea N., Simionescu N. Anionized and cationized hemeundecapeptides as probes for cell surface charge and permeability studies: differentiated labeling of endothelial plasmalemmal vesicles. J Cell Biol. 1985 Feb;100(2):606–612. doi: 10.1083/jcb.100.2.606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Goff B. A., Bamberg M., Hasan T. Photoimmunotherapy of human ovarian carcinoma cells ex vivo. Cancer Res. 1991 Sep 15;51(18):4762–4767. [PubMed] [Google Scholar]
  22. Haldenby K. A., Chappell D. C., Winlove C. P., Parker K. H., Firth J. A. Focal and regional variations in the composition of the glycocalyx of large vessel endothelium. J Vasc Res. 1994 Jan-Feb;31(1):2–9. doi: 10.1159/000159025. [DOI] [PubMed] [Google Scholar]
  23. Hamblin M. R., Newman E. L. On the mechanism of the tumour-localising effect in photodynamic therapy. J Photochem Photobiol B. 1994 Apr;23(1):3–8. doi: 10.1016/s1011-1344(94)80018-9. [DOI] [PubMed] [Google Scholar]
  24. Hamblin M. R., Newman E. L. Photosensitizer targeting in photodynamic therapy. II. Conjugates of haematoporphyrin with serum lipoproteins. J Photochem Photobiol B. 1994 Nov;26(2):147–157. doi: 10.1016/1011-1344(94)07036-9. [DOI] [PubMed] [Google Scholar]
  25. Henderson B. W., Bellnier D. A., Greco W. R., Sharma A., Pandey R. K., Vaughan L. A., Weishaupt K. R., Dougherty T. J. An in vivo quantitative structure-activity relationship for a congeneric series of pyropheophorbide derivatives as photosensitizers for photodynamic therapy. Cancer Res. 1997 Sep 15;57(18):4000–4007. [PubMed] [Google Scholar]
  26. Henderson B. W., Dougherty T. J. How does photodynamic therapy work? Photochem Photobiol. 1992 Jan;55(1):145–157. doi: 10.1111/j.1751-1097.1992.tb04222.x. [DOI] [PubMed] [Google Scholar]
  27. Hobbs S. K., Monsky W. L., Yuan F., Roberts W. G., Griffith L., Torchilin V. P., Jain R. K. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4607–4612. doi: 10.1073/pnas.95.8.4607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Jain R. K. Delivery of novel therapeutic agents in tumors: physiological barriers and strategies. J Natl Cancer Inst. 1989 Apr 19;81(8):570–576. doi: 10.1093/jnci/81.8.570. [DOI] [PubMed] [Google Scholar]
  29. Jain R. K. Determinants of tumor blood flow: a review. Cancer Res. 1988 May 15;48(10):2641–2658. [PubMed] [Google Scholar]
  30. Jain R. K. Transport of molecules across tumor vasculature. Cancer Metastasis Rev. 1987;6(4):559–593. doi: 10.1007/BF00047468. [DOI] [PubMed] [Google Scholar]
  31. Kohn S., Nagy J. A., Dvorak H. F., Dvorak A. M. Pathways of macromolecular tracer transport across venules and small veins. Structural basis for the hyperpermeability of tumor blood vessels. Lab Invest. 1992 Nov;67(5):596–607. [PubMed] [Google Scholar]
  32. Kopecek J. Targetable polymeric anticancer drugs. Temporal control of drug activity. Ann N Y Acad Sci. 1991;618:335–344. doi: 10.1111/j.1749-6632.1991.tb27253.x. [DOI] [PubMed] [Google Scholar]
  33. Krinick N. L., Sun Y., Joyner D., Spikes J. D., Straight R. C., Kopecek J. A polymeric drug delivery system for the simultaneous delivery of drugs activatable by enzymes and/or light. J Biomater Sci Polym Ed. 1994;5(4):303–324. doi: 10.1163/156856294x00040. [DOI] [PubMed] [Google Scholar]
  34. Larson E., Howlett B., Jagendorf A. Artificial reductant enhancement of the Lowry method for protein determination. Anal Biochem. 1986 Jun;155(2):243–248. doi: 10.1016/0003-2697(86)90432-x. [DOI] [PubMed] [Google Scholar]
  35. Leppälä J., Kallio M., Nikula T., Nikkinen P., Liewendahl K., Jäskeläinen J., Savolainen S., Gylling H., Hiltunen J., Callaway J. Accumulation of 99mTc-low-density lipoprotein in human malignant glioma. Br J Cancer. 1995 Feb;71(2):383–387. doi: 10.1038/bjc.1995.78. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Ley K., Arfors K. E. Segmental differences of microvascular permeability for FITC-dextrans measured in the hamster cheek pouch. Microvasc Res. 1986 Jan;31(1):84–99. doi: 10.1016/0026-2862(86)90009-9. [DOI] [PubMed] [Google Scholar]
  37. Mariani G., Molea N., Bacciardi D., Boggi U., Fornaciari G., Campani D., Salvadori P. A., Giulianotti P. C., Mosca F., Gold D. V. Initial tumor targeting, biodistribution, and pharmacokinetic evaluation of the monoclonal antibody PAM4 in patients with pancreatic cancer. Cancer Res. 1995 Dec 1;55(23 Suppl):5911s–5915s. [PubMed] [Google Scholar]
  38. Masquelier M., Vitols S., Peterson C. Low-density lipoprotein as a carrier of antitumoral drugs: in vivo fate of drug-human low-density lipoprotein complexes in mice. Cancer Res. 1986 Aug;46(8):3842–3847. [PubMed] [Google Scholar]
  39. Matsumura Y., Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986 Dec;46(12 Pt 1):6387–6392. [PubMed] [Google Scholar]
  40. Mayhan W. G., Heistad D. D. Permeability of blood-brain barrier to various sized molecules. Am J Physiol. 1985 May;248(5 Pt 2):H712–H718. doi: 10.1152/ajpheart.1985.248.5.H712. [DOI] [PubMed] [Google Scholar]
  41. Nugent L. J., Jain R. K. Plasma pharmacokinetics and interstitial diffusion of macromolecules in a capillary bed. Am J Physiol. 1984 Jan;246(1 Pt 2):H129–H137. doi: 10.1152/ajpheart.1984.246.1.H129. [DOI] [PubMed] [Google Scholar]
  42. Ojteg G., Nygren K., Wolgast M. Permeability of renal capillaries. II. Transport of neutral and charged protein molecular probes. Acta Physiol Scand. 1987 Mar;129(3):287–294. doi: 10.1111/j.1748-1716.1987.tb08071.x. [DOI] [PubMed] [Google Scholar]
  43. Orenstein A., Nelson J. S., Liaw L. H., Kaplan R., Kimel S., Berns M. W. Photochemotherapy of hypervascular dermal lesions: a possible alternative to photothermal therapy? Lasers Surg Med. 1990;10(4):334–343. doi: 10.1002/lsm.1900100406. [DOI] [PubMed] [Google Scholar]
  44. Rajadhyaksha M., Grossman M., Esterowitz D., Webb R. H., Anderson R. R. In vivo confocal scanning laser microscopy of human skin: melanin provides strong contrast. J Invest Dermatol. 1995 Jun;104(6):946–952. doi: 10.1111/1523-1747.ep12606215. [DOI] [PubMed] [Google Scholar]
  45. Rakestraw S. L., Tompkins R. G., Yarmush M. L. Preparation and characterization of immunoconjugates for antibody-targeted photolysis. Bioconjug Chem. 1990 May-Jun;1(3):212–221. doi: 10.1021/bc00003a006. [DOI] [PubMed] [Google Scholar]
  46. Roberts W. G., Palade G. E. Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J Cell Sci. 1995 Jun;108(Pt 6):2369–2379. doi: 10.1242/jcs.108.6.2369. [DOI] [PubMed] [Google Scholar]
  47. Schmidt-Erfurth U., Hasan T., Gragoudas E., Michaud N., Flotte T. J., Birngruber R. Vascular targeting in photodynamic occlusion of subretinal vessels. Ophthalmology. 1994 Dec;101(12):1953–1961. doi: 10.1016/s0161-6420(13)31079-3. [DOI] [PubMed] [Google Scholar]
  48. Senger D. R., Van de Water L., Brown L. F., Nagy J. A., Yeo K. T., Yeo T. K., Berse B., Jackman R. W., Dvorak A. M., Dvorak H. F. Vascular permeability factor (VPF, VEGF) in tumor biology. Cancer Metastasis Rev. 1993 Sep;12(3-4):303–324. doi: 10.1007/BF00665960. [DOI] [PubMed] [Google Scholar]
  49. Seymour L. W., Duncan R., Kopecková P., Kopecek J. Daunomycin- and adriamycin-N-(2-hydroxypropyl)methacrylamide copolymer conjugates; toxicity reduction by improved drug-delivery. Cancer Treat Rev. 1987 Dec;14(3-4):319–327. doi: 10.1016/0305-7372(87)90024-7. [DOI] [PubMed] [Google Scholar]
  50. Seymour L. W. Passive tumor targeting of soluble macromolecules and drug conjugates. Crit Rev Ther Drug Carrier Syst. 1992;9(2):135–187. [PubMed] [Google Scholar]
  51. Simionescu M., Simionescu N. Functions of the endothelial cell surface. Annu Rev Physiol. 1986;48:279–293. doi: 10.1146/annurev.ph.48.030186.001431. [DOI] [PubMed] [Google Scholar]
  52. Simionescu N., Simionescu M., Palade G. E. Differentiated microdomains on the luminal surface of the capillary endothelium. I. Preferential distribution of anionic sites. J Cell Biol. 1981 Sep;90(3):605–613. doi: 10.1083/jcb.90.3.605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Soukos N. S., Hamblin M. R., Hasan T. The effect of charge on cellular uptake and phototoxicity of polylysine chlorin(e6) conjugates. Photochem Photobiol. 1997 Apr;65(4):723–729. doi: 10.1111/j.1751-1097.1997.tb01916.x. [DOI] [PubMed] [Google Scholar]
  54. Vieweg J., Heston W. D., Gilboa E., Fair W. R. An experimental model simulating local recurrence and pelvic lymph node metastasis following orthotopic induction of prostate cancer. Prostate. 1994 Jun;24(6):291–298. doi: 10.1002/pros.2990240604. [DOI] [PubMed] [Google Scholar]
  55. Yeung T. K., Hopewell J. W., Simmonds R. H., Seymour L. W., Duncan R., Bellini O., Grandi M., Spreafico F., Strohalm J., Ulbrich K. Reduced cardiotoxicity of doxorubicin given in the form of N-(2-hydroxypropyl)methacrylamide conjugates: and experimental study in the rat. Cancer Chemother Pharmacol. 1991;29(2):105–111. doi: 10.1007/BF00687318. [DOI] [PubMed] [Google Scholar]
  56. Yuan F., Dellian M., Fukumura D., Leunig M., Berk D. A., Torchilin V. P., Jain R. K. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res. 1995 Sep 1;55(17):3752–3756. [PubMed] [Google Scholar]
  57. Yuan F., Leunig M., Huang S. K., Berk D. A., Papahadjopoulos D., Jain R. K. Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res. 1994 Jul 1;54(13):3352–3356. [PubMed] [Google Scholar]
  58. Zunino F., Pratesi G., Pezzoni G. Increased therapeutic efficacy and reduced toxicity of doxorubicin linked to pyran copolymer via the side chain of the drug. Cancer Treat Rep. 1987 Apr;71(4):367–373. [PubMed] [Google Scholar]
  59. van Leengoed H. L., Cuomo V., Versteeg A. A., van der Veen N., Jori G., Star W. M. In vivo fluorescence and photodynamic activity of zinc phthalocyanine administered in liposomes. Br J Cancer. 1994 May;69(5):840–845. doi: 10.1038/bjc.1994.163. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES