Abstract
The hydrolysis of sphingomyelin generates key molecules regulating cell growth and inducing apoptosis. Data from animal cancer models support an inhibitory role for this pathway in the malignant transformation of the colonic mucosa. In the intestinal tract, a sphingomyelinase with an optimum alkaline pH has been identified. We recently found that the activity of alkaline sphingomyelinase is significantly decreased in colorectal adenocarcinomas, indicating a potential anticarcinogenic role of this enzyme. To further examine whether the reduction of sphingomyelinase is present already in the premalignant state of neoplastic transformation, we measured sphingomyelinase activities in patients with familial adenomatous polyposis (FAP) and in sporadic colorectal tubulovillous adenomas. Tissue samples were taken from adenomas and surrounding macroscopically normal mucosa from 11 FAP patients operated with ileorectal anastomosis, from three FAP patients with intact colon, from 13 patients with sporadic colorectal adenomas and from 12 controls. Activities of acid, neutral and alkaline sphingomyelinase were measured together with alkaline phosphatase. In FAP adenoma tissue, alkaline sphingomyelinase activity was reduced by 90% compared to controls (P < 0.0001), acid sphingomyelinase by 66% (P < 0.01) and neutral sphingomyelinase by 54% (P < 0.05). Similar reductions were found in the surrounding mucosa. In sporadic adenoma tissue, only alkaline sphingomyelinase was reduced significantly, by 57% (P < 0.05). Alkaline phosphatase was not changed in FAP adenomas, but decreased in the sporadic adenomas. We conclude that the markedly reduced levels of alkaline sphingomyelinase activities in FAP adenomas and in the surrounding mucosa may be a pathogenic factor that can lead to unrestrained cell proliferation and neoplastic transformation. © 1999 Cancer Research Campaign
Keywords: alkaline sphingomyelinase, FAP, adenoma, tumorigenesis, human
Full Text
The Full Text of this article is available as a PDF (70.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baeg G. H., Matsumine A., Kuroda T., Bhattacharjee R. N., Miyashiro I., Toyoshima K., Akiyama T. The tumour suppressor gene product APC blocks cell cycle progression from G0/G1 to S phase. EMBO J. 1995 Nov 15;14(22):5618–5625. doi: 10.1002/j.1460-2075.1995.tb00249.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Browne S. J., Williams A. C., Hague A., Butt A. J., Paraskeva C. Loss of APC protein expressed by human colonic epithelial cells and the appearance of a specific low-molecular-weight form is associated with apoptosis in vitro. Int J Cancer. 1994 Oct 1;59(1):56–64. doi: 10.1002/ijc.2910590113. [DOI] [PubMed] [Google Scholar]
- Chatterjee S. Neutral sphingomyelinase. Adv Lipid Res. 1993;26:25–48. [PubMed] [Google Scholar]
- Dillehay D. L., Webb S. K., Schmelz E. M., Merrill A. H., Jr Dietary sphingomyelin inhibits 1,2-dimethylhydrazine-induced colon cancer in CF1 mice. J Nutr. 1994 May;124(5):615–620. doi: 10.1093/jn/124.5.615. [DOI] [PubMed] [Google Scholar]
- Duan R. D., Hertervig E., Nyberg L., Hauge T., Sternby B., Lillienau J., Farooqi A., Nilsson A. Distribution of alkaline sphingomyelinase activity in human beings and animals. Tissue and species differences. Dig Dis Sci. 1996 Sep;41(9):1801–1806. doi: 10.1007/BF02088748. [DOI] [PubMed] [Google Scholar]
- Duan R. D., Nyberg L., Nilsson A. Alkaline sphingomyelinase activity in rat gastrointestinal tract: distribution and characteristics. Biochim Biophys Acta. 1995 Oct 26;1259(1):49–55. doi: 10.1016/0005-2760(95)00137-2. [DOI] [PubMed] [Google Scholar]
- Dudeja P. K., Dahiya R., Brasitus T. A. The role of sphingomyelin synthetase and sphingomyelinase in 1,2-dimethylhydrazine-induced lipid alterations of rat colonic plasma membranes. Biochim Biophys Acta. 1986 Dec 16;863(2):309–312. doi: 10.1016/0005-2736(86)90272-5. [DOI] [PubMed] [Google Scholar]
- Earnest D. L., Holubec H., Wali R. K., Jolley C. S., Bissonette M., Bhattacharyya A. K., Roy H., Khare S., Brasitus T. A. Chemoprevention of azoxymethane-induced colonic carcinogenesis by supplemental dietary ursodeoxycholic acid. Cancer Res. 1994 Oct 1;54(19):5071–5074. [PubMed] [Google Scholar]
- Gatt S. Magnesium-dependent sphingomyelinase. Biochem Biophys Res Commun. 1976 Jan 12;68(1):235–241. doi: 10.1016/0006-291x(76)90034-6. [DOI] [PubMed] [Google Scholar]
- Groden J., Thliveris A., Samowitz W., Carlson M., Gelbert L., Albertsen H., Joslyn G., Stevens J., Spirio L., Robertson M. Identification and characterization of the familial adenomatous polyposis coli gene. Cell. 1991 Aug 9;66(3):589–600. doi: 10.1016/0092-8674(81)90021-0. [DOI] [PubMed] [Google Scholar]
- Hannun Y. A., Linardic C. M. Sphingolipid breakdown products: anti-proliferative and tumor-suppressor lipids. Biochim Biophys Acta. 1993 Dec 21;1154(3-4):223–236. doi: 10.1016/0304-4157(93)90001-5. [DOI] [PubMed] [Google Scholar]
- Hertervig E., Nilsson A., Nyberg L., Duan R. D. Alkaline sphingomyelinase activity is decreased in human colorectal carcinoma. Cancer. 1997 Feb 1;79(3):448–453. [PubMed] [Google Scholar]
- Ichii S., Horii A., Nakatsuru S., Furuyama J., Utsunomiya J., Nakamura Y. Inactivation of both APC alleles in an early stage of colon adenomas in a patient with familial adenomatous polyposis (FAP). Hum Mol Genet. 1992 Sep;1(6):387–390. doi: 10.1093/hmg/1.6.387. [DOI] [PubMed] [Google Scholar]
- Jen J., Powell S. M., Papadopoulos N., Smith K. J., Hamilton S. R., Vogelstein B., Kinzler K. W. Molecular determinants of dysplasia in colorectal lesions. Cancer Res. 1994 Nov 1;54(21):5523–5526. [PubMed] [Google Scholar]
- Kinzler K. W., Nilbert M. C., Su L. K., Vogelstein B., Bryan T. M., Levy D. B., Smith K. J., Preisinger A. C., Hedge P., McKechnie D. Identification of FAP locus genes from chromosome 5q21. Science. 1991 Aug 9;253(5020):661–665. doi: 10.1126/science.1651562. [DOI] [PubMed] [Google Scholar]
- Kinzler K. W., Vogelstein B. Lessons from hereditary colorectal cancer. Cell. 1996 Oct 18;87(2):159–170. doi: 10.1016/s0092-8674(00)81333-1. [DOI] [PubMed] [Google Scholar]
- Kolesnick R. N. Sphingomyelin and derivatives as cellular signals. Prog Lipid Res. 1991;30(1):1–38. doi: 10.1016/0163-7827(91)90005-p. [DOI] [PubMed] [Google Scholar]
- Korinek V., Barker N., Morin P. J., van Wichen D., de Weger R., Kinzler K. W., Vogelstein B., Clevers H. Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. Science. 1997 Mar 21;275(5307):1784–1787. doi: 10.1126/science.275.5307.1784. [DOI] [PubMed] [Google Scholar]
- Luongo C., Moser A. R., Gledhill S., Dove W. F. Loss of Apc+ in intestinal adenomas from Min mice. Cancer Res. 1994 Nov 15;54(22):5947–5952. [PubMed] [Google Scholar]
- Merchant T. E., Diamantis P. M., Lauwers G., Haida T., Kasimos J. N., Guillem J., Glonek T., Minsky B. D. Characterization of malignant colon tumors with 31P nuclear magnetic resonance phospholipid and phosphatic metabolite profiles. Cancer. 1995 Nov 15;76(10):1715–1723. doi: 10.1002/1097-0142(19951115)76:10<1715::aid-cncr2820761007>3.0.co;2-d. [DOI] [PubMed] [Google Scholar]
- Morin P. J., Sparks A. B., Korinek V., Barker N., Clevers H., Vogelstein B., Kinzler K. W. Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science. 1997 Mar 21;275(5307):1787–1790. doi: 10.1126/science.275.5307.1787. [DOI] [PubMed] [Google Scholar]
- Nilsson A. The presence of spingomyelin- and ceramide-cleaving enzymes in the small intestinal tract. Biochim Biophys Acta. 1969 Mar 4;176(2):339–347. doi: 10.1016/0005-2760(69)90192-1. [DOI] [PubMed] [Google Scholar]
- Nyberg L., Duan R. D., Axelson J., Nilsson A. Identification of an alkaline sphingomyelinase activity in human bile. Biochim Biophys Acta. 1996 Mar 29;1300(1):42–48. doi: 10.1016/0005-2760(95)00245-6. [DOI] [PubMed] [Google Scholar]
- Obeid L. M., Linardic C. M., Karolak L. A., Hannun Y. A. Programmed cell death induced by ceramide. Science. 1993 Mar 19;259(5102):1769–1771. doi: 10.1126/science.8456305. [DOI] [PubMed] [Google Scholar]
- Schmelz E. M., Dillehay D. L., Webb S. K., Reiter A., Adams J., Merrill A. H., Jr Sphingomyelin consumption suppresses aberrant colonic crypt foci and increases the proportion of adenomas versus adenocarcinomas in CF1 mice treated with 1,2-dimethylhydrazine: implications for dietary sphingolipids and colon carcinogenesis. Cancer Res. 1996 Nov 1;56(21):4936–4941. [PubMed] [Google Scholar]
- Spence M. W. Sphingomyelinases. Adv Lipid Res. 1993;26:3–23. [PubMed] [Google Scholar]
- Stoffel W. Chemical synthesis of choline-labeled lecithins and sphingomyelins. Methods Enzymol. 1975;35:533–541. doi: 10.1016/0076-6879(75)35181-1. [DOI] [PubMed] [Google Scholar]
- Su L. K., Vogelstein B., Kinzler K. W. Association of the APC tumor suppressor protein with catenins. Science. 1993 Dec 10;262(5140):1734–1737. doi: 10.1126/science.8259519. [DOI] [PubMed] [Google Scholar]
- Wong M. H., Hermiston M. L., Syder A. J., Gordon J. I. Forced expression of the tumor suppressor adenomatosis polyposis coli protein induces disordered cell migration in the intestinal epithelium. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9588–9593. doi: 10.1073/pnas.93.18.9588. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yang V. W., Shields J. M., Hamilton S. R., Spannhake E. W., Hubbard W. C., Hylind L. M., Robinson C. R., Giardiello F. M. Size-dependent increase in prostanoid levels in adenomas of patients with familial adenomatous polyposis. Cancer Res. 1998 Apr 15;58(8):1750–1753. [PubMed] [Google Scholar]
