Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Oct;81(4):638–646. doi: 10.1038/sj.bjc.6690741

Characterization of a novel transplantable orthotopic rat bladder transitional cell tumour model

Z Xiao 1, T J McCallum 1, K M Brown 1, G G Miller 2, S B Halls 3, I Parney 1, R B Moore 1
PMCID: PMC2362887  PMID: 10574249

Abstract

An animal tumour model that mimics the human counterpart is essential for preclinical evaluation of new treatment modalities. The objective of this study was to develop and characterize such a model. To accomplish this, the established AY-27 rat bladder transitional cell carcinoma (TCC) cell line was transplanted orthotopically into Fischer CDF344 female rats. AY-27 TCC cells were grown in monolayer cell culture and instilled intravesically as single cell suspensions into bladders that had been conditioned with mild acid washing. Tumour growth was assessed weekly by subjecting the rats to magnetic resonance imaging (MRI). At intervals following implantation and MRI tumour detection, the animals were sacrificed for necropsy, histological examination and immunocytochemical studies. Flow cytometry was also performed for detection of Fas or Fas-ligand expression on AY-27 cells. The overall tumour establishment was 95% (97/102 rats) at 12–50 days, while in a subgroup of animals sacrificed at 16 days, 80 out of 82 animals (97%) developed TCC, the majority of which was superficial. Tumour stage was assessed by gross pathology and light microscopy. Histological examination of the tumour specimens confirmed the presence of grade II–III TCC. Immunocytochemistry confirmed that the tumour model maintained the features of TCC. The changes seen on MRI correlated well with the extent of tumour invasion identified histologically. Patchy carcinoma in situ could be detected histologically 12–13 days post-inoculation, and progressed to papillary tumour or invasive disease thereafter. Neither Fas nor Fas-ligand was expressed on AY-27 cells. The orthotopic AY-27 TCC model is highly reproducible and is ideal for preclinical studies on experimental intravesical therapies. © 1999 Cancer Research Campaign

Keywords: animal tumour model, magnetic resonance imaging, transitional cell carcinoma

Full Text

The Full Text of this article is available as a PDF (439.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arai M., Cohen S. M., Jacobs J. B., Friedell G. H. Effect of dose on urinary bladder carcinogenesis induced in F344 rats by N-[4-(5-nitro-2-furyl)-2-thiazolyl]formamide. J Natl Cancer Inst. 1979 Apr;62(4):1013–1016. [PubMed] [Google Scholar]
  2. Chin J., Kadhim S., Garcia B., Kim Y. S., Karlik S. Magnetic resonance imaging for detecting and treatment monitoring of orthotopic murine bladder tumor implants. J Urol. 1991 Jun;145(6):1297–1301. doi: 10.1016/s0022-5347(17)38618-4. [DOI] [PubMed] [Google Scholar]
  3. Cilento B. G., Freeman M. R., Schneck F. X., Retik A. B., Atala A. Phenotypic and cytogenetic characterization of human bladder urothelia expanded in vitro. J Urol. 1994 Aug;152(2 Pt 2):665–670. doi: 10.1016/s0022-5347(17)32676-9. [DOI] [PubMed] [Google Scholar]
  4. Droller M. J., Gomolka D. Expression of the cellular immune response during tumor development in an animal model of bladder cancer. J Urol. 1982 Dec;128(6):1385–1389. doi: 10.1016/s0022-5347(17)53514-4. [DOI] [PubMed] [Google Scholar]
  5. Ertürk E., Cohen S. M., Bryan G. T. Urinary bladder carcinogenicity of N-[4-(5-nitro-2-furyl)-2-thiazolyl] formamide in female Swiss mice. Cancer Res. 1970 May;30(5):1309–1311. [PubMed] [Google Scholar]
  6. Ertürk E., Cohen S. M., Price J. M., Bryan G. T. Pathogenesis, histology, and transplantability of urinary bladder carcinomas induced in albino rats by oral administration of N-(4-(5-nitro-2-furyl)-2-thiazolyl)formamide. Cancer Res. 1969 Dec;29(12):2219–2228. [PubMed] [Google Scholar]
  7. Ertürk E., Price J. M., Morris J. E., Cohen S., Leith R. S., Von Esch A. M., Crovetti A. J. The production of carcinoma of the urinary bladder in rats by feeding N-[3-(5-nitro-2-furyl)-2-thiazolyl]formamide. Cancer Res. 1967 Nov;27(11):1998–2002. [PubMed] [Google Scholar]
  8. Grossman H. B. Superficial bladder cancer: decreasing the risk of recurrence. Oncology (Williston Park) 1996 Nov;10(11):1617-24; discussion 1624, 1627-8. [PubMed] [Google Scholar]
  9. Herman C. J., Vegt P. D., Debruyne F. M., Vooijs G. P., Ramaekers F. C. Squamous and transitional elements in rat bladder carcinomas induced by N-butyl-N-4-hydroxybutyl-nitrosamine (BBN). A study of cytokeratin expression. Am J Pathol. 1985 Sep;120(3):419–426. [PMC free article] [PubMed] [Google Scholar]
  10. Ibrahiem E. H., Nigam V. N., Brailovsky C. A., Madarnas P., Elhilali M. Orthotopic implantation of primary N-[4-(5-Nitro-2-furyl)-2-thiazolyl]formamide-induced bladder cancer in bladder submucosa: an animal model for bladder cancer study. Cancer Res. 1983 Feb;43(2):617–622. [PubMed] [Google Scholar]
  11. Iinuma S., Bachor R., Flotte T., Hasan T. Biodistribution and phototoxicity of 5-aminolevulinic acid-induced PpIX in an orthotopic rat bladder tumor model. J Urol. 1995 Mar;153(3 Pt 1):802–806. [PubMed] [Google Scholar]
  12. Lamm D. L., Torti F. M. Bladder cancer, 1996. CA Cancer J Clin. 1996 Mar-Apr;46(2):93–112. doi: 10.3322/canjclin.46.2.93. [DOI] [PubMed] [Google Scholar]
  13. Letocha H., Nilsson S., Silén A., Ekblom J., Arnberg H., Wiklund B., Westlin J. E. Immunotargeting with monoclonal cytokeratin 8 antibodies of human urothelial cancer transplanted to nude mice. Acta Oncol. 1993;32(7-8):793–800. doi: 10.3109/02841869309096138. [DOI] [PubMed] [Google Scholar]
  14. Moll R., Achtstätter T., Becht E., Balcarova-Ständer J., Ittensohn M., Franke W. W. Cytokeratins in normal and malignant transitional epithelium. Maintenance of expression of urothelial differentiation features in transitional cell carcinomas and bladder carcinoma cell culture lines. Am J Pathol. 1988 Jul;132(1):123–144. [PMC free article] [PubMed] [Google Scholar]
  15. Moll R., Franke W. W., Schiller D. L., Geiger B., Krepler R. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell. 1982 Nov;31(1):11–24. doi: 10.1016/0092-8674(82)90400-7. [DOI] [PubMed] [Google Scholar]
  16. Nagata S., Golstein P. The Fas death factor. Science. 1995 Mar 10;267(5203):1449–1456. doi: 10.1126/science.7533326. [DOI] [PubMed] [Google Scholar]
  17. Ohtani M., Kakizoe T., Nishio Y., Sato S., Sugimura T., Fukushima S., Niijima T. Sequential changes of mouse bladder epithelium during induction of invasive carcinomas by N-butyl-N-(4-hydroxybutyl)nitrosamine. Cancer Res. 1986 Apr;46(4 Pt 2):2001–2004. [PubMed] [Google Scholar]
  18. Orozco R. E., Martin A. A., Murphy W. M. Carcinoma in situ of the urinary bladder. Clues to host involvement in human carcinogenesis. Cancer. 1994 Jul 1;74(1):115–122. doi: 10.1002/1097-0142(19940701)74:1<115::aid-cncr2820740120>3.0.co;2-r. [DOI] [PubMed] [Google Scholar]
  19. Oyasu R. Epithelial tumours of the lower urinary tract in humans and rodents. Food Chem Toxicol. 1995 Sep;33(9):747–755. doi: 10.1016/0278-6915(95)00042-z. [DOI] [PubMed] [Google Scholar]
  20. Oyasu R., Samma S., Ozono S., Bauer K., Wallemark C. B., Homma Y. Induction of high-grade, high-stage carcinomas in the rat urinary bladder. Cancer. 1987 Feb 1;59(3):451–458. doi: 10.1002/1097-0142(19870201)59:3<451::aid-cncr2820590317>3.0.co;2-a. [DOI] [PubMed] [Google Scholar]
  21. Roth B. J. Chemotherapy for advanced bladder cancer. Semin Oncol. 1996 Oct;23(5):633–644. [PubMed] [Google Scholar]
  22. Ruoslahti E. How cancer spreads. Sci Am. 1996 Sep;275(3):72–77. doi: 10.1038/scientificamerican0996-72. [DOI] [PubMed] [Google Scholar]
  23. Samma S., Uchida K., Seidenfeld J., Oyasu R. Effects of alpha-difluromethylornithine on the development of deeply invasive urinary bladder carcinomas in mice. Urol Res. 1990;18(4):277–280. doi: 10.1007/BF00294773. [DOI] [PubMed] [Google Scholar]
  24. Soloway M. S. Intravesical and systemic chemotherapy of murine bladder cancer. Cancer Res. 1977 Aug;37(8 Pt 2):2918–2929. [PubMed] [Google Scholar]
  25. Steinert P. M., Roop D. R. Molecular and cellular biology of intermediate filaments. Annu Rev Biochem. 1988;57:593–625. doi: 10.1146/annurev.bi.57.070188.003113. [DOI] [PubMed] [Google Scholar]
  26. Stocker S., Knüchel R., Sroka R., Kriegmair M., Steinbach P., Baumgartner R. Wavelength dependent photodynamic effects on chemically induced rat bladder tumors following intravesical instillation of 5-aminolevulinic acid. J Urol. 1997 Jan;157(1):357–361. [PubMed] [Google Scholar]
  27. Tseng S. C., Jarvinen M. J., Nelson W. G., Huang J. W., Woodcock-Mitchell J., Sun T. T. Correlation of specific keratins with different types of epithelial differentiation: monoclonal antibody studies. Cell. 1982 Sep;30(2):361–372. doi: 10.1016/0092-8674(82)90234-3. [DOI] [PubMed] [Google Scholar]
  28. Whitmore W. F., Jr Bladder cancer: an overview. CA Cancer J Clin. 1988 Jul-Aug;38(4):213–223. doi: 10.3322/canjclin.38.4.213. [DOI] [PubMed] [Google Scholar]
  29. Xiao Z., Miller G. G., McCallum T. J., Brown K. M., Lown J. W., Tulip J., Moore R. B. Biodistribution of Photofrin II and 5-aminolevulinic acid-induced protoporphyrin IX in normal rat bladder and bladder tumor models: implications for photodynamic therapy. Photochem Photobiol. 1998 May;67(5):573–583. [PubMed] [Google Scholar]
  30. Yamada K. M., Geiger B. Molecular interactions in cell adhesion complexes. Curr Opin Cell Biol. 1997 Feb;9(1):76–85. doi: 10.1016/s0955-0674(97)80155-x. [DOI] [PubMed] [Google Scholar]
  31. van Moorselaar R. J., Ichikawa T., Schaafsma H. E., Jap P. H., Isaacs J. T., van Stratum P., Ramaekers F. C., Debruyne F. M., Schalken J. A. The rat bladder tumor model system RBT resembles phenotypically and cytogenetically human superficial transitional cell carcinoma. Urol Res. 1993;21(6):413–421. doi: 10.1007/BF00300078. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES