Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Oct;81(4):677–683. doi: 10.1038/sj.bjc.6690747

High prevalence of p16 genetic alterations in head and neck tumours

E C Miracca 1, L P Kowalski 2, M A Nagai 1
PMCID: PMC2362902  PMID: 10574255

Abstract

Inactivation of the p16 gene is believed to contribute to the tumorigenic process of several neoplasms, including head and neck tumours. In the present study, DNA samples from paired tumour and adjacent normal tissue from 47 patients with squamous cell carcinoma of the head and neck were investigated for the occurrence of p16 genetic alterations. Single-strand conformation polymorphism and direct DNA sequence analysis led to the identification of p16 mutations in six cases (13%). Southern blot analysis showed that homozygous deletion is a rare event in the group of tumours analysed. Loss of heterozygosity (LOH) analysis was performed by polymerase chain reaction (PCR) using two microsatellite markers (IFNA and D9S171) from the 9p21 region. Taking into account only the informative cases, 17 of 32 tumours (53%) showed LOH for at least one of the markers analysed. The methylation status of the CpG sites in the exon 1 of the p16 gene was analysed using methylation-sensitive restriction enzymes and PCR amplification. Hypermethylation was observed in 22 (47%) of the head and neck tumours analysed. In our series of head and neck tumours, evidence for inactivation of both p16 alleles was observed in 13 cases with hypermethylation and LOH, two cases with hypermethylation and mutation, four cases with mutation and LOH and one case with homozygous deletion. These findings provide further evidence that genetic alterations, especially hypermethylation and LOH, leading to the inactivation of the p16 tumour suppressor gene are common in primary head and neck tumours. © 1999 Cancer Research Campaign

Keywords: p16, head and neck tumours, hypermethylation, LOH

Full Text

The Full Text of this article is available as a PDF (197.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arap W., Knudsen E., Sewell D. A., Sidransky D., Wang J. Y., Huang H. J., Cavenee W. K. Functional analysis of wild-type and malignant glioma derived CDKN2Abeta alleles: evidence for an RB-independent growth suppressive pathway. Oncogene. 1997 Oct 23;15(17):2013–2020. doi: 10.1038/sj.onc.1201389. [DOI] [PubMed] [Google Scholar]
  2. Cairns P., Mao L., Merlo A., Lee D. J., Schwab D., Eby Y., Tokino K., van der Riet P., Blaugrund J. E., Sidransky D. Rates of p16 (MTS1) mutations in primary tumors with 9p loss. Science. 1994 Jul 15;265(5170):415–417. doi: 10.1126/science.8023167. [DOI] [PubMed] [Google Scholar]
  3. Cairns P., Polascik T. J., Eby Y., Tokino K., Califano J., Merlo A., Mao L., Herath J., Jenkins R., Westra W. Frequency of homozygous deletion at p16/CDKN2 in primary human tumours. Nat Genet. 1995 Oct;11(2):210–212. doi: 10.1038/ng1095-210. [DOI] [PubMed] [Google Scholar]
  4. Caldas C., Hahn S. A., da Costa L. T., Redston M. S., Schutte M., Seymour A. B., Weinstein C. L., Hruban R. H., Yeo C. J., Kern S. E. Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma. Nat Genet. 1994 Sep;8(1):27–32. doi: 10.1038/ng0994-27. [DOI] [PubMed] [Google Scholar]
  5. Califano J., van der Riet P., Westra W., Nawroz H., Clayman G., Piantadosi S., Corio R., Lee D., Greenberg B., Koch W. Genetic progression model for head and neck cancer: implications for field cancerization. Cancer Res. 1996 Jun 1;56(11):2488–2492. [PubMed] [Google Scholar]
  6. Chin L., Pomerantz J., DePinho R. A. The INK4a/ARF tumor suppressor: one gene--two products--two pathways. Trends Biochem Sci. 1998 Aug;23(8):291–296. doi: 10.1016/s0968-0004(98)01236-5. [DOI] [PubMed] [Google Scholar]
  7. El-Naggar A. K., Lai S., Clayman G., Lee J. K., Luna M. A., Goepfert H., Batsakis J. G. Methylation, a major mechanism of p16/CDKN2 gene inactivation in head and neck squamous carcinoma. Am J Pathol. 1997 Dec;151(6):1767–1774. [PMC free article] [PubMed] [Google Scholar]
  8. Farrell W. E., Simpson D. J., Bicknell J. E., Talbot A. J., Bates A. S., Clayton R. N. Chromosome 9p deletions in invasive and noninvasive nonfunctional pituitary adenomas: the deleted region involves markers outside of the MTS1 and MTS2 genes. Cancer Res. 1997 Jul 1;57(13):2703–2709. [PubMed] [Google Scholar]
  9. Flores J. F., Walker G. J., Glendening J. M., Haluska F. G., Castresana J. S., Rubio M. P., Pastorfide G. C., Boyer L. A., Kao W. H., Bulyk M. L. Loss of the p16INK4a and p15INK4b genes, as well as neighboring 9p21 markers, in sporadic melanoma. Cancer Res. 1996 Nov 1;56(21):5023–5032. [PubMed] [Google Scholar]
  10. Fueyo J., Gomez-Manzano C., Bruner J. M., Saito Y., Zhang B., Zhang W., Levin V. A., Yung W. K., Kyritsis A. P. Hypermethylation of the CpG island of p16/CDKN2 correlates with gene inactivation in gliomas. Oncogene. 1996 Oct 17;13(8):1615–1619. [PubMed] [Google Scholar]
  11. Furlong R. A., Lyall J. E., Lush M. J., Affara N. A., Ferguson-Smith M. A. Four dinucleotide repeat polymorphisms on chromosome 9 (D9S143-146). Hum Mol Genet. 1992 Sep;1(6):447–447. doi: 10.1093/hmg/1.6.447. [DOI] [PubMed] [Google Scholar]
  12. Gallo O., Santucci M., Franchi A. Cumulative prognostic value of p16/CDKN2 and p53 oncoprotein expression in premalignant laryngeal lesions. J Natl Cancer Inst. 1997 Aug 6;89(15):1161–1163. doi: 10.1093/jnci/89.15.1161. [DOI] [PubMed] [Google Scholar]
  13. González M. V., Pello M. F., López-Larrea C., Suárez C., Menéndez M. J., Coto E. Deletion and methylation of the tumour suppressor gene p16/CDKN2 in primary head and neck squamous cell carcinoma. J Clin Pathol. 1997 Jun;50(6):509–512. doi: 10.1136/jcp.50.6.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gyapay G., Morissette J., Vignal A., Dib C., Fizames C., Millasseau P., Marc S., Bernardi G., Lathrop M., Weissenbach J. The 1993-94 Généthon human genetic linkage map. Nat Genet. 1994 Jun;7(2 Spec No):246–339. doi: 10.1038/ng0694supp-246. [DOI] [PubMed] [Google Scholar]
  15. Herman J. G., Merlo A., Mao L., Lapidus R. G., Issa J. P., Davidson N. E., Sidransky D., Baylin S. B. Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res. 1995 Oct 15;55(20):4525–4530. [PubMed] [Google Scholar]
  16. Hunter T., Pines J. Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age. Cell. 1994 Nov 18;79(4):573–582. doi: 10.1016/0092-8674(94)90543-6. [DOI] [PubMed] [Google Scholar]
  17. Hussussian C. J., Struewing J. P., Goldstein A. M., Higgins P. A., Ally D. S., Sheahan M. D., Clark W. H., Jr, Tucker M. A., Dracopoli N. C. Germline p16 mutations in familial melanoma. Nat Genet. 1994 Sep;8(1):15–21. doi: 10.1038/ng0994-15. [DOI] [PubMed] [Google Scholar]
  18. Jares P., Fernández P. L., Nadal A., Cazorla M., Hernández L., Pinyol M., Hernández S., Traserra J., Cardesa A., Campo E. p16MTS1/CDK4I mutations and concomitant loss of heterozygosity at 9p21-23 are frequent events in squamous cell carcinoma of the larynx. Oncogene. 1997 Sep 18;15(12):1445–1453. doi: 10.1038/sj.onc.1201309. [DOI] [PubMed] [Google Scholar]
  19. Jarrard D. F., Bova G. S., Ewing C. M., Pin S. S., Nguyen S. H., Baylin S. B., Cairns P., Sidransky D., Herman J. G., Isaacs W. B. Deletional, mutational, and methylation analyses of CDKN2 (p16/MTS1) in primary and metastatic prostate cancer. Genes Chromosomes Cancer. 1997 Jun;19(2):90–96. [PubMed] [Google Scholar]
  20. Kamb A., Gruis N. A., Weaver-Feldhaus J., Liu Q., Harshman K., Tavtigian S. V., Stockert E., Day R. S., 3rd, Johnson B. E., Skolnick M. H. A cell cycle regulator potentially involved in genesis of many tumor types. Science. 1994 Apr 15;264(5157):436–440. doi: 10.1126/science.8153634. [DOI] [PubMed] [Google Scholar]
  21. Kamijo T., Weber J. D., Zambetti G., Zindy F., Roussel M. F., Sherr C. J. Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc Natl Acad Sci U S A. 1998 Jul 7;95(14):8292–8297. doi: 10.1073/pnas.95.14.8292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kim S. K., Ro J. Y., Kemp B. L., Lee J. S., Kwon T. J., Fong K. M., Sekido Y., Minna J. D., Hong W. K., Mao L. Identification of three distinct tumor suppressor loci on the short arm of chromosome 9 in small cell lung cancer. Cancer Res. 1997 Feb 1;57(3):400–403. [PubMed] [Google Scholar]
  23. Koh J., Enders G. H., Dynlacht B. D., Harlow E. Tumour-derived p16 alleles encoding proteins defective in cell-cycle inhibition. Nature. 1995 Jun 8;375(6531):506–510. doi: 10.1038/375506a0. [DOI] [PubMed] [Google Scholar]
  24. Kwiatkowski D. J., Diaz M. O. Dinucleotide repeat polymorphism at the IFNA locus (9p22). Hum Mol Genet. 1992 Nov;1(8):658–658. doi: 10.1093/hmg/1.8.658-a. [DOI] [PubMed] [Google Scholar]
  25. Liggett W. H., Jr, Sewell D. A., Rocco J., Ahrendt S. A., Koch W., Sidransky D. p16 and p16 beta are potent growth suppressors of head and neck squamous carcinoma cells in vitro. Cancer Res. 1996 Sep 15;56(18):4119–4123. [PubMed] [Google Scholar]
  26. Lo K. W., Cheung S. T., Leung S. F., van Hasselt A., Tsang Y. S., Mak K. F., Chung Y. F., Woo J. K., Lee J. C., Huang D. P. Hypermethylation of the p16 gene in nasopharyngeal carcinoma. Cancer Res. 1996 Jun 15;56(12):2721–2725. [PubMed] [Google Scholar]
  27. Lydiatt W. M., Murty V. V., Davidson B. J., Xu L., Dyomina K., Sacks P. G., Schantz S. P., Chaganti R. S. Homozygous deletions and loss of expression of the CDKN2 gene occur frequently in head and neck squamous cell carcinoma cell lines but infrequently in primary tumors. Genes Chromosomes Cancer. 1995 Jun;13(2):94–98. doi: 10.1002/gcc.2870130204. [DOI] [PubMed] [Google Scholar]
  28. Maesawa C., Tamura G., Nishizuka S., Ogasawara S., Ishida K., Terashima M., Sakata K., Sato N., Saito K., Satodate R. Inactivation of the CDKN2 gene by homozygous deletion and de novo methylation is associated with advanced stage esophageal squamous cell carcinoma. Cancer Res. 1996 Sep 1;56(17):3875–3878. [PubMed] [Google Scholar]
  29. Merlo A., Herman J. G., Mao L., Lee D. J., Gabrielson E., Burger P. C., Baylin S. B., Sidransky D. 5' CpG island methylation is associated with transcriptional silencing of the tumour suppressor p16/CDKN2/MTS1 in human cancers. Nat Med. 1995 Jul;1(7):686–692. doi: 10.1038/nm0795-686. [DOI] [PubMed] [Google Scholar]
  30. Mori T., Miura K., Aoki T., Nishihira T., Mori S., Nakamura Y. Frequent somatic mutation of the MTS1/CDK4I (multiple tumor suppressor/cyclin-dependent kinase 4 inhibitor) gene in esophageal squamous cell carcinoma. Cancer Res. 1994 Jul 1;54(13):3396–3397. [PubMed] [Google Scholar]
  31. Nagai M. A., Marques L. A., Torloni H., Brentani M. M. Genetic alterations in c-erbB-2 protooncogene as prognostic markers in human primary breast tumors. Oncology. 1993 Nov-Dec;50(6):412–417. doi: 10.1159/000227221. [DOI] [PubMed] [Google Scholar]
  32. Nawroz H., van der Riet P., Hruban R. H., Koch W., Ruppert J. M., Sidransky D. Allelotype of head and neck squamous cell carcinoma. Cancer Res. 1994 Mar 1;54(5):1152–1155. [PubMed] [Google Scholar]
  33. Ng M. H., Chung Y. F., Lo K. W., Wickham N. W., Lee J. C., Huang D. P. Frequent hypermethylation of p16 and p15 genes in multiple myeloma. Blood. 1997 Apr 1;89(7):2500–2506. [PubMed] [Google Scholar]
  34. Nobori T., Miura K., Wu D. J., Lois A., Takabayashi K., Carson D. A. Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature. 1994 Apr 21;368(6473):753–756. doi: 10.1038/368753a0. [DOI] [PubMed] [Google Scholar]
  35. Okamoto A., Demetrick D. J., Spillare E. A., Hagiwara K., Hussain S. P., Bennett W. P., Forrester K., Gerwin B., Serrano M., Beach D. H. Mutations and altered expression of p16INK4 in human cancer. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):11045–11049. doi: 10.1073/pnas.91.23.11045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Papadimitrakopoulou V., Izzo J., Lippman S. M., Lee J. S., Fan Y. H., Clayman G., Ro J. Y., Hittelman W. N., Lotan R., Hong W. K. Frequent inactivation of p16INK4a in oral premalignant lesions. Oncogene. 1997 Apr 17;14(15):1799–1803. doi: 10.1038/sj.onc.1201010. [DOI] [PubMed] [Google Scholar]
  37. Pollock P. M., Pearson J. V., Hayward N. K. Compilation of somatic mutations of the CDKN2 gene in human cancers: non-random distribution of base substitutions. Genes Chromosomes Cancer. 1996 Feb;15(2):77–88. doi: 10.1002/(SICI)1098-2264(199602)15:2<77::AID-GCC1>3.0.CO;2-0. [DOI] [PubMed] [Google Scholar]
  38. Puig S., Ruiz A., Lázaro C., Castel T., Lynch M., Palou J., Vilalta A., Weissenbach J., Mascaro J. M., Estivill X. Chromosome 9p deletions in cutaneous malignant melanoma tumors: the minimal deleted region involves markers outside the p16 (CDKN2) gene. Am J Hum Genet. 1995 Aug;57(2):395–402. [PMC free article] [PubMed] [Google Scholar]
  39. Quelle D. E., Cheng M., Ashmun R. A., Sherr C. J. Cancer-associated mutations at the INK4a locus cancel cell cycle arrest by p16INK4a but not by the alternative reading frame protein p19ARF. Proc Natl Acad Sci U S A. 1997 Jan 21;94(2):669–673. doi: 10.1073/pnas.94.2.669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Quelle D. E., Zindy F., Ashmun R. A., Sherr C. J. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell. 1995 Dec 15;83(6):993–1000. doi: 10.1016/0092-8674(95)90214-7. [DOI] [PubMed] [Google Scholar]
  41. Ranade K., Hussussian C. J., Sikorski R. S., Varmus H. E., Goldstein A. M., Tucker M. A., Serrano M., Hannon G. J., Beach D., Dracopoli N. C. Mutations associated with familial melanoma impair p16INK4 function. Nat Genet. 1995 May;10(1):114–116. doi: 10.1038/ng0595-114. [DOI] [PubMed] [Google Scholar]
  42. Reed A. L., Califano J., Cairns P., Westra W. H., Jones R. M., Koch W., Ahrendt S., Eby Y., Sewell D., Nawroz H. High frequency of p16 (CDKN2/MTS-1/INK4A) inactivation in head and neck squamous cell carcinoma. Cancer Res. 1996 Aug 15;56(16):3630–3633. [PubMed] [Google Scholar]
  43. Serrano M., Hannon G. J., Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature. 1993 Dec 16;366(6456):704–707. doi: 10.1038/366704a0. [DOI] [PubMed] [Google Scholar]
  44. Serrano M., Lee H., Chin L., Cordon-Cardo C., Beach D., DePinho R. A. Role of the INK4a locus in tumor suppression and cell mortality. Cell. 1996 Apr 5;85(1):27–37. doi: 10.1016/s0092-8674(00)81079-x. [DOI] [PubMed] [Google Scholar]
  45. Stone S., Jiang P., Dayananth P., Tavtigian S. V., Katcher H., Parry D., Peters G., Kamb A. Complex structure and regulation of the P16 (MTS1) locus. Cancer Res. 1995 Jul 15;55(14):2988–2994. [PubMed] [Google Scholar]
  46. Sun Y., Hildesheim A., Lanier A. E., Cao Y., Yao K. T., Raab-Traub N., Yang C. S. No point mutation but decreased expression of the p16/MTS1 tumor suppressor gene in nasopharyngeal carcinomas. Oncogene. 1995 Feb 16;10(4):785–788. [PubMed] [Google Scholar]
  47. Tam S. W., Shay J. W., Pagano M. Differential expression and cell cycle regulation of the cyclin-dependent kinase 4 inhibitor p16Ink4. Cancer Res. 1994 Nov 15;54(22):5816–5820. [PubMed] [Google Scholar]
  48. Williamson M. P., Elder P. A., Shaw M. E., Devlin J., Knowles M. A. p16 (CDKN2) is a major deletion target at 9p21 in bladder cancer. Hum Mol Genet. 1995 Sep;4(9):1569–1577. doi: 10.1093/hmg/4.9.1569. [DOI] [PubMed] [Google Scholar]
  49. Wong D. J., Barrett M. T., Stöger R., Emond M. J., Reid B. J. p16INK4a promoter is hypermethylated at a high frequency in esophageal adenocarcinomas. Cancer Res. 1997 Jul 1;57(13):2619–2622. [PubMed] [Google Scholar]
  50. Yeudall W. A., Jakus J. Cyclin kinase inhibitors add a new dimension to cell cycle control. Eur J Cancer B Oral Oncol. 1995 Sep;31B(5):291–298. doi: 10.1016/0964-1955(95)00028-3. [DOI] [PubMed] [Google Scholar]
  51. Zhang S. Y., Klein-Szanto A. J., Sauter E. R., Shafarenko M., Mitsunaga S., Nobori T., Carson D. A., Ridge J. A., Goodrow T. L. Higher frequency of alterations in the p16/CDKN2 gene in squamous cell carcinoma cell lines than in primary tumors of the head and neck. Cancer Res. 1994 Oct 1;54(19):5050–5053. [PubMed] [Google Scholar]
  52. van der Riet P., Nawroz H., Hruban R. H., Corio R., Tokino K., Koch W., Sidransky D. Frequent loss of chromosome 9p21-22 early in head and neck cancer progression. Cancer Res. 1994 Mar 1;54(5):1156–1158. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES