Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Oct;81(3):393–403. doi: 10.1038/sj.bjc.6690707

Proline-rich antimicrobial peptide, PR-39 gene transduction altered invasive activity and actin structure in human hepatocellular carcinoma cells

T Ohtake 1, Y Fujimoto 1, K Ikuta 1, H Saito 1, M Ohhira 1, M Ono 1, Y Kohgo 1
PMCID: PMC2362919  PMID: 10507762

Abstract

PR-39 is an endogenous proline-rich antimicrobial peptide which induces the synthesis of syndecan-1, a transmembrane heparan sulphate proteoglycan involved in cell-to-matrix interactions and wound healing. Previously, we revealed that the expression of syndecan-1 was reduced in human hepatocellular carcinomas with high metastatic potential and speculated that syndecan-1 played an important role in inhibition of invasion and metastasis. It is assumed that a modification of this process with PR-39 and syndecan-1 may result in a new strategy by which it can inhibit the invasion and metastasis. Therefore, we transduced a gene of PR-39 into human hepatocellular carcinoma cell line HLF, which shows a low expression of syndecan-1 and a high in vitro invasive activity, and examined whether this procedure could reduce the invasive activity of tumour cells. In two transfectants with PR-39 gene, the syndecan-1 expression was induced and the invasive activity in type I collagen-coated chamber was inhibited. Moreover, these transfectants showed the suppression of motile activity assayed by phagokinetic tracks in addition to the disorganization of actin filaments observed by a confocal imaging system. In contrast, five transfectants with syndecan-1 gene in the HLF cells revealed suppression of invasive activity but did not alter the motile activity and actin structures of the cell. These results suggest that PR-39 has functions involved in the suppression of motile activity and alteration of actin structure on human hepatocellular carcinoma cells in addition to the suppression of invasive activity which might result from the induction of syndecan-1 expression. © 1999 Cancer Research Campaign

Keywords: antimicrobial peptide, PR-39, actin, hepatocellular carcinoma, syndecan

Full Text

The Full Text of this article is available as a PDF (605.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agerberth B., Gunne H., Odeberg J., Kogner P., Boman H. G., Gudmundsson G. H. FALL-39, a putative human peptide antibiotic, is cysteine-free and expressed in bone marrow and testis. Proc Natl Acad Sci U S A. 1995 Jan 3;92(1):195–199. doi: 10.1073/pnas.92.1.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Agerberth B., Gunne H., Odeberg J., Kogner P., Boman H. G., Gudmundsson G. H. PR-39, a proline-rich peptide antibiotic from pig, and FALL-39, a tentative human counterpart. Vet Immunol Immunopathol. 1996 Nov;54(1-4):127–131. doi: 10.1016/s0165-2427(96)05676-0. [DOI] [PubMed] [Google Scholar]
  3. Agerberth B., Lee J. Y., Bergman T., Carlquist M., Boman H. G., Mutt V., Jörnvall H. Amino acid sequence of PR-39. Isolation from pig intestine of a new member of the family of proline-arginine-rich antibacterial peptides. Eur J Biochem. 1991 Dec 18;202(3):849–854. doi: 10.1111/j.1432-1033.1991.tb16442.x. [DOI] [PubMed] [Google Scholar]
  4. Albini A., Iwamoto Y., Kleinman H. K., Martin G. R., Aaronson S. A., Kozlowski J. M., McEwan R. N. A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res. 1987 Jun 15;47(12):3239–3245. [PubMed] [Google Scholar]
  5. Albrecht-Buehler G. The phagokinetic tracks of 3T3 cells. Cell. 1977 Jun;11(2):395–404. doi: 10.1016/0092-8674(77)90057-5. [DOI] [PubMed] [Google Scholar]
  6. Aycock R. S., Seyer J. M. Collagens of normal and cirrhotic human liver. Connect Tissue Res. 1989;23(1):19–31. doi: 10.3109/03008208909103901. [DOI] [PubMed] [Google Scholar]
  7. Bernfield M., Hinkes M. T., Gallo R. L. Developmental expression of the syndecans: possible function and regulation. Dev Suppl. 1993:205–212. [PubMed] [Google Scholar]
  8. Boman H. G., Agerberth B., Boman A. Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect Immun. 1993 Jul;61(7):2978–2984. doi: 10.1128/iai.61.7.2978-2984.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Boman H. G. Peptide antibiotics and their role in innate immunity. Annu Rev Immunol. 1995;13:61–92. doi: 10.1146/annurev.iy.13.040195.000425. [DOI] [PubMed] [Google Scholar]
  10. Chan Y. R., Gallo R. L. PR-39, a syndecan-inducing antimicrobial peptide, binds and affects p130(Cas). J Biol Chem. 1998 Oct 30;273(44):28978–28985. doi: 10.1074/jbc.273.44.28978. [DOI] [PubMed] [Google Scholar]
  11. Dickson R. B., Johnson M. D., Maemura M., Low J. Anti-invasion drugs. Breast Cancer Res Treat. 1996;38(1):121–132. doi: 10.1007/BF01803790. [DOI] [PubMed] [Google Scholar]
  12. Dor I., Namba M., Sato J. Establishment and some biological characteristics of human hepatoma cell lines. Gan. 1975 Aug;66(4):385–392. [PubMed] [Google Scholar]
  13. Effert P. J., Gastl G., Strohmeyer T. Current and future strategies to block tumor angiogenesis, invasion, and metastasis. World J Urol. 1996;14(3):131–140. doi: 10.1007/BF00186892. [DOI] [PubMed] [Google Scholar]
  14. Elenius K., Mättä A., Salmivirta M., Jalkanen M. Growth factors induce 3T3 cells to express bFGF-binding syndecan. J Biol Chem. 1992 Mar 25;267(9):6435–6441. [PubMed] [Google Scholar]
  15. Elenius K., Salmivirta M., Inki P., Mali M., Jalkanen M. Binding of human syndecan to extracellular matrix proteins. J Biol Chem. 1990 Oct 15;265(29):17837–17843. [PubMed] [Google Scholar]
  16. Gallo R. L., Ono M., Povsic T., Page C., Eriksson E., Klagsbrun M., Bernfield M. Syndecans, cell surface heparan sulfate proteoglycans, are induced by a proline-rich antimicrobial peptide from wounds. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):11035–11039. doi: 10.1073/pnas.91.23.11035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gout I., Dhand R., Hiles I. D., Fry M. J., Panayotou G., Das P., Truong O., Totty N. F., Hsuan J., Booker G. W. The GTPase dynamin binds to and is activated by a subset of SH3 domains. Cell. 1993 Oct 8;75(1):25–36. [PubMed] [Google Scholar]
  18. Hinkes M. T., Goldberger O. A., Neumann P. E., Kokenyesi R., Bernfield M. Organization and promoter activity of the mouse syndecan-1 gene. J Biol Chem. 1993 May 25;268(15):11440–11448. [PubMed] [Google Scholar]
  19. Huh N., Utakoji T. Production of HBs-antigen by two new human hepatoma cell lines and its enhancement by dexamethasone. Gan. 1981 Feb;72(1):178–179. [PubMed] [Google Scholar]
  20. Koda J. E., Rapraeger A., Bernfield M. Heparan sulfate proteoglycans from mouse mammary epithelial cells. Cell surface proteoglycan as a receptor for interstitial collagens. J Biol Chem. 1985 Jul 5;260(13):8157–8162. [PubMed] [Google Scholar]
  21. Liebersbach B. F., Sanderson R. D. Expression of syndecan-1 inhibits cell invasion into type I collagen. J Biol Chem. 1994 Aug 5;269(31):20013–20019. [PubMed] [Google Scholar]
  22. Martin E., Ganz T., Lehrer R. I. Defensins and other endogenous peptide antibiotics of vertebrates. J Leukoc Biol. 1995 Aug;58(2):128–136. doi: 10.1002/jlb.58.2.128. [DOI] [PubMed] [Google Scholar]
  23. Matsumoto A., Ono M., Fujimoto Y., Gallo R. L., Bernfield M., Kohgo Y. Reduced expression of syndecan-1 in human hepatocellular carcinoma with high metastatic potential. Int J Cancer. 1997 Oct 21;74(5):482–491. doi: 10.1002/(sici)1097-0215(19971021)74:5<482::aid-ijc2>3.0.co;2-#. [DOI] [PubMed] [Google Scholar]
  24. Musacchio A., Wilmanns M., Saraste M. Structure and function of the SH3 domain. Prog Biophys Mol Biol. 1994;61(3):283–297. doi: 10.1016/0079-6107(94)90003-5. [DOI] [PubMed] [Google Scholar]
  25. Pawson T. Protein modules and signalling networks. Nature. 1995 Feb 16;373(6515):573–580. doi: 10.1038/373573a0. [DOI] [PubMed] [Google Scholar]
  26. Rapraeger A., Jalkanen M., Endo E., Koda J., Bernfield M. The cell surface proteoglycan from mouse mammary epithelial cells bears chondroitin sulfate and heparan sulfate glycosaminoglycans. J Biol Chem. 1985 Sep 15;260(20):11046–11052. [PubMed] [Google Scholar]
  27. Sanderson R. D., Bernfield M. Molecular polymorphism of a cell surface proteoglycan: distinct structures on simple and stratified epithelia. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9562–9566. doi: 10.1073/pnas.85.24.9562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Sanderson R. D., Hinkes M. T., Bernfield M. Syndecan-1, a cell-surface proteoglycan, changes in size and abundance when keratinocytes stratify. J Invest Dermatol. 1992 Oct;99(4):390–396. doi: 10.1111/1523-1747.ep12616103. [DOI] [PubMed] [Google Scholar]
  29. Saunders S., Bernfield M. Cell surface proteoglycan binds mouse mammary epithelial cells to fibronectin and behaves as a receptor for interstitial matrix. J Cell Biol. 1988 Feb;106(2):423–430. doi: 10.1083/jcb.106.2.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Saunders S., Jalkanen M., O'Farrell S., Bernfield M. Molecular cloning of syndecan, an integral membrane proteoglycan. J Cell Biol. 1989 Apr;108(4):1547–1556. doi: 10.1083/jcb.108.4.1547. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Shi J., Ross C. R., Leto T. L., Blecha F. PR-39, a proline-rich antibacterial peptide that inhibits phagocyte NADPH oxidase activity by binding to Src homology 3 domains of p47 phox. Proc Natl Acad Sci U S A. 1996 Jun 11;93(12):6014–6018. doi: 10.1073/pnas.93.12.6014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Solursh M., Reiter R. S., Jensen K. L., Kato M., Bernfield M. Transient expression of a cell surface heparan sulfate proteoglycan (syndecan) during limb development. Dev Biol. 1990 Jul;140(1):83–92. doi: 10.1016/0012-1606(90)90055-n. [DOI] [PubMed] [Google Scholar]
  33. Storici P., Zanetti M. A cDNA derived from pig bone marrow cells predicts a sequence identical to the intestinal antibacterial peptide PR-39. Biochem Biophys Res Commun. 1993 Nov 15;196(3):1058–1065. doi: 10.1006/bbrc.1993.2358. [DOI] [PubMed] [Google Scholar]
  34. Stossel T. P. On the crawling of animal cells. Science. 1993 May 21;260(5111):1086–1094. doi: 10.1126/science.8493552. [DOI] [PubMed] [Google Scholar]
  35. Vainio S., Lehtonen E., Jalkanen M., Bernfield M., Saxén L. Epithelial-mesenchymal interactions regulate the stage-specific expression of a cell surface proteoglycan, syndecan, in the developing kidney. Dev Biol. 1989 Aug;134(2):382–391. doi: 10.1016/0012-1606(89)90110-3. [DOI] [PubMed] [Google Scholar]
  36. Vainio S., Thesleff I. Coordinated induction of cell proliferation and syndecan expression in dental mesenchyme by epithelium: evidence for diffusible signals. Dev Dyn. 1992 Jun;194(2):105–117. doi: 10.1002/aja.1001940204. [DOI] [PubMed] [Google Scholar]
  37. Yeaman C., Rapraeger A. C. Post-transcriptional regulation of syndecan-1 expression by cAMP in peritoneal macrophages. J Cell Biol. 1993 Aug;122(4):941–950. doi: 10.1083/jcb.122.4.941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Yu H., Chen J. K., Feng S., Dalgarno D. C., Brauer A. W., Schreiber S. L. Structural basis for the binding of proline-rich peptides to SH3 domains. Cell. 1994 Mar 11;76(5):933–945. doi: 10.1016/0092-8674(94)90367-0. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES