Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Oct;81(3):423–430. doi: 10.1038/sj.bjc.6690711

Preferential killing of multidrug-resistant KB cells by inhibitors of glucosylceramide synthase

K M Nicholson 1, D M Quinn 1, G L Kellett 1, J R Warr 1
PMCID: PMC2362922  PMID: 10507766

Abstract

This study has compared the preferential killing of three multidrug-resistant (MDR) KB cell lines, KB-C1, KB-A1 and KB-V1 by two inhibitors of glucosylceramide synthase, 1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP) and 1-phenyl-2-hexadecanoylamino-3-pyrrolidino-1-propanol (PPPP), to the killing produced by these compounds in the drug-sensitive cell line, KB-3-1. Both of the inhibitors caused much greater induction of apoptosis in each of the three MDR cell lines than in the drug-sensitive cell line, as judged by morphological assay and confirmed by poly-(ADP-ribose)-polymerase cleavage. The highest level of apoptosis was produced following 24-h exposure to 5 μM PPPP. This treatment produced 75.8 (± 7.1)%, 73.6 (± 9.8)% and 75.3 (± 6.4)% apoptotic cells in the three MDR cell lines respectively, compared to 19.0 (± 9.8)% in the drug-sensitive cell line. A reduction in glucosylceramide level following inhibitor treatment occurred in KB-3-1 cells as well as in the MDR cell lines, suggesting that the increased apoptotic response in the MDR cells reflected a different downstream response to changes in the levels of this lipid in these cells compared to that in the drug-sensitive cells. These results suggest that the manipulation of glucosylceramide levels may be a fruitful way of causing the preferential killing of MDR cells in vitro and possibly in vivo. © 1999 Cancer Research Campaign

Keywords: multidrug-resistance, glucosylceramide, apoptosis

Full Text

The Full Text of this article is available as a PDF (209.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe A., Radin N. S., Shayman J. A., Wotring L. L., Zipkin R. E., Sivakumar R., Ruggieri J. M., Carson K. G., Ganem B. Structural and stereochemical studies of potent inhibitors of glucosylceramide synthase and tumor cell growth. J Lipid Res. 1995 Mar;36(3):611–621. [PubMed] [Google Scholar]
  2. Bell S. E., Quinn D. M., Kellett G. L., Warr J. R. 2-Deoxy-D-glucose preferentially kills multidrug-resistant human KB carcinoma cell lines by apoptosis. Br J Cancer. 1998 Dec;78(11):1464–1470. doi: 10.1038/bjc.1998.708. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bentley J., Bell S. E., Quinn D. M., Kellett G. L., Warr J. R. 2-deoxy-D-glucose toxicity and transport in human multidrug-resistant KB carcinoma cell lines. Oncol Res. 1996;8(2):77–84. [PubMed] [Google Scholar]
  4. Bentley J., Quinn D. M., Pitman R. S., Warr J. R., Kellett G. L. The human KB multidrug-resistant cell line KB-C1 is hypersensitive to inhibitors of glycosylation. Cancer Lett. 1997 May 19;115(2):221–227. doi: 10.1016/s0304-3835(97)04739-3. [DOI] [PubMed] [Google Scholar]
  5. Cohen J. S., Lyon R. C. Multinuclear NMR study of the metabolism of drug-sensitive and drug-resistant human breast cancer cells. Ann N Y Acad Sci. 1987;508:216–228. doi: 10.1111/j.1749-6632.1987.tb32906.x. [DOI] [PubMed] [Google Scholar]
  6. Dobrowsky R. T., Hannun Y. A. Ceramide stimulates a cytosolic protein phosphatase. J Biol Chem. 1992 Mar 15;267(8):5048–5051. [PubMed] [Google Scholar]
  7. Hannun Y. A., Bell R. M. Functions of sphingolipids and sphingolipid breakdown products in cellular regulation. Science. 1989 Jan 27;243(4890):500–507. doi: 10.1126/science.2643164. [DOI] [PubMed] [Google Scholar]
  8. Hofmann K., Dixit V. M. Ceramide in apoptosis--does it really matter? Trends Biochem Sci. 1998 Oct;23(10):374–377. doi: 10.1016/s0968-0004(98)01289-4. [DOI] [PubMed] [Google Scholar]
  9. Jarvis W. D., Grant S., Kolesnick R. N. Ceramide and the induction of apoptosis. Clin Cancer Res. 1996 Jan;2(1):1–6. [PubMed] [Google Scholar]
  10. Kaufmann S. H., Desnoyers S., Ottaviano Y., Davidson N. E., Poirier G. G. Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res. 1993 Sep 1;53(17):3976–3985. [PubMed] [Google Scholar]
  11. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  12. Lavie Y., Cao H., Bursten S. L., Giuliano A. E., Cabot M. C. Accumulation of glucosylceramides in multidrug-resistant cancer cells. J Biol Chem. 1996 Aug 9;271(32):19530–19536. doi: 10.1074/jbc.271.32.19530. [DOI] [PubMed] [Google Scholar]
  13. Ling V. Charles F. Kettering Prize. P-glycoprotein and resistance to anticancer drugs. Cancer. 1992 May 15;69(10):2603–2609. doi: 10.1002/1097-0142(19920515)69:10<2603::aid-cncr2820691034>3.0.co;2-e. [DOI] [PubMed] [Google Scholar]
  14. Lozano J., Berra E., Municio M. M., Diaz-Meco M. T., Dominguez I., Sanz L., Moscat J. Protein kinase C zeta isoform is critical for kappa B-dependent promoter activation by sphingomyelinase. J Biol Chem. 1994 Jul 29;269(30):19200–19202. [PubMed] [Google Scholar]
  15. Luberto C., Hannun Y. A. Sphingomyelin synthase, a potential regulator of intracellular levels of ceramide and diacylglycerol during SV40 transformation. Does sphingomyelin synthase account for the putative phosphatidylcholine-specific phospholipase C? J Biol Chem. 1998 Jun 5;273(23):14550–14559. doi: 10.1074/jbc.273.23.14550. [DOI] [PubMed] [Google Scholar]
  16. Lucci A., Cho W. I., Han T. Y., Giuliano A. E., Morton D. L., Cabot M. C. Glucosylceramide: a marker for multiple-drug resistant cancers. Anticancer Res. 1998 Jan-Feb;18(1B):475–480. [PubMed] [Google Scholar]
  17. Marsh N. L., Elias P. M., Holleran W. M. Glucosylceramides stimulate murine epidermal hyperproliferation. J Clin Invest. 1995 Jun;95(6):2903–2909. doi: 10.1172/JCI117997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Martin S. J., Reutelingsperger C. P., McGahon A. J., Rader J. A., van Schie R. C., LaFace D. M., Green D. R. Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: inhibition by overexpression of Bcl-2 and Abl. J Exp Med. 1995 Nov 1;182(5):1545–1556. doi: 10.1084/jem.182.5.1545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mathias S., Dressler K. A., Kolesnick R. N. Characterization of a ceramide-activated protein kinase: stimulation by tumor necrosis factor alpha. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10009–10013. doi: 10.1073/pnas.88.22.10009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Radin N. S. Rationales for cancer chemotherapy with PDMP, a specific inhibitor of glucosylceramide synthase. Mol Chem Neuropathol. 1994 Feb-Apr;21(2-3):111–127. doi: 10.1007/BF02815346. [DOI] [PubMed] [Google Scholar]
  21. Radin N. S., Shayman J. A., Inokuchi J. Metabolic effects of inhibiting glucosylceramide synthesis with PDMP and other substances. Adv Lipid Res. 1993;26:183–213. [PubMed] [Google Scholar]
  22. Radin N. S. Treatment of Gaucher disease with an enzyme inhibitor. Glycoconj J. 1996 Apr;13(2):153–157. doi: 10.1007/BF00731489. [DOI] [PubMed] [Google Scholar]
  23. Rani C. S., Abe A., Chang Y., Rosenzweig N., Saltiel A. R., Radin N. S., Shayman J. A. Cell cycle arrest induced by an inhibitor of glucosylceramide synthase. Correlation with cyclin-dependent kinases. J Biol Chem. 1995 Feb 10;270(6):2859–2867. doi: 10.1074/jbc.270.6.2859. [DOI] [PubMed] [Google Scholar]
  24. Volm M. Multidrug resistance and its reversal. Anticancer Res. 1998 Jul-Aug;18(4C):2905–2917. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES