Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Nov;81(6):942–951. doi: 10.1038/sj.bjc.6690791

The acridonecarboxamide GF120918 potently reverses P-glycoprotein-mediated resistance in human sarcoma MES-Dx5 cells

H C L Traunecker 1, M C G Stevens 2, D J Kerr 1, D R Ferry 1
PMCID: PMC2362940  PMID: 10576649

Abstract

The doxorubicin-selected, P-glycoprotein (P-gp)-expressing human sarcoma cell line MES-Dx5 showed the following levels of resistance relative to the non-P-gp-expressing parental MES-SA cells in a 72 h exposure to cytotoxic drugs: etoposide twofold, doxorubicin ninefold, vinblastine tenfold, taxotere 19-fold and taxol 94-fold. GF120918 potently reversed resistance completely for all drugs. The EC50s of GF120918 to reverse resistance of MES-Dx5 cells were: etoposide 7 ± 2 nM, vinblastine 19 ± 3 nM, doxorubicin 21 ± 6 nM, taxotere 57 ± 14 nM and taxol 91 ± 23 nM. MES-Dx5 cells exhibited an accumulation deficit relative to the parental MES-SA cells of 35% for [3H]-vinblastine, 20% for [3H]-taxol and [14C]-doxorubicin. The EC50 of GF120918, to reverse the accumulation deficit in MES-Dx5 cells, ranged from 37 to 64 nM for all three radiolabelled cytotoxics. [3H]-vinblastine bound saturably to membranes from MES-Dx5 cells with a KD of 7.8 ± 1.4 nM and a Bmax of 5.2 ± 1.6 pmol mg–1 protein. Binding of [3H]-vinblastine to P-gp in MES-Dx5 membranes was inhibited by GF120918 (Ki = 5 ± 1 nM), verapamil (Ki = 660 ± 350 nM) and doxorubicin (Ki = 6940 ± 2100 nM). Taxol, an allosteric inhibitor of [3H]-vinblastine binding to P-gp, could only displace 40% of [3H]-vinblastine (Ki = 400 ± 140 nM). The novel acridonecarboxamide derivative GF120918 potently overcomes P-gp-mediated multidrug resistance in the human sarcoma cell line MES-Dx5. Detailed analysis revealed that five times higher GF120918 concentrations were needed to reverse drug resistance to taxol in the cytotoxicity assay compared to doxorubicin, vinblastine and etoposide. An explanation for this phenomenon had not been found. © 1999 Cancer Research Campaign

Keywords: multidrug resistance, P-glycoprotein inhibitor, GF120918, MES-Dx5 cells

Full Text

The Full Text of this article is available as a PDF (151.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrand M. A., Heppell-Parton A. C., Wright K. A., Rabbitts P. H., Twentyman P. R. A 190-kilodalton protein overexpressed in non-P-glycoprotein-containing multidrug-resistant cells and its relationship to the MRP gene. J Natl Cancer Inst. 1994 Jan 19;86(2):110–117. doi: 10.1093/jnci/86.2.110. [DOI] [PubMed] [Google Scholar]
  2. Boer R., Dichtl M., Borchers C., Ulrich W. R., Marecek J. F., Prestwich G. D., Glossmann H., Striessnig J. Reversible labeling of a chemosensitizer binding domain of p-glycoprotein with a novel 1,4-dihydropyridine drug transport inhibitor. Biochemistry. 1996 Feb 6;35(5):1387–1396. doi: 10.1021/bi951912u. [DOI] [PubMed] [Google Scholar]
  3. Callaghan R., Berridge G., Ferry D. R., Higgins C. F. The functional purification of P-glycoprotein is dependent on maintenance of a lipid-protein interface. Biochim Biophys Acta. 1997 Sep 4;1328(2):109–124. doi: 10.1016/s0005-2736(97)00079-5. [DOI] [PubMed] [Google Scholar]
  4. Chen G., Jaffrézou J. P., Fleming W. H., Durán G. E., Sikic B. I. Prevalence of multidrug resistance related to activation of the mdr1 gene in human sarcoma mutants derived by single-step doxorubicin selection. Cancer Res. 1994 Sep 15;54(18):4980–4987. [PubMed] [Google Scholar]
  5. Cole S. P., Bhardwaj G., Gerlach J. H., Mackie J. E., Grant C. E., Almquist K. C., Stewart A. J., Kurz E. U., Duncan A. M., Deeley R. G. Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science. 1992 Dec 4;258(5088):1650–1654. doi: 10.1126/science.1360704. [DOI] [PubMed] [Google Scholar]
  6. Davies R., Budworth J., Riley J., Snowden R., Gescher A., Gant T. W. Regulation of P-glycoprotein 1 and 2 gene expression and protein activity in two MCF-7/Dox cell line subclones. Br J Cancer. 1996 Feb;73(3):307–315. doi: 10.1038/bjc.1996.54. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. De Lean A., Hancock A. A., Lefkowitz R. J. Validation and statistical analysis of a computer modeling method for quantitative analysis of radioligand binding data for mixtures of pharmacological receptor subtypes. Mol Pharmacol. 1982 Jan;21(1):5–16. [PubMed] [Google Scholar]
  8. Dey S., Ramachandra M., Pastan I., Gottesman M. M., Ambudkar S. V. Evidence for two nonidentical drug-interaction sites in the human P-glycoprotein. Proc Natl Acad Sci U S A. 1997 Sep 30;94(20):10594–10599. doi: 10.1073/pnas.94.20.10594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Endicott J. A., Ling V. The biochemistry of P-glycoprotein-mediated multidrug resistance. Annu Rev Biochem. 1989;58:137–171. doi: 10.1146/annurev.bi.58.070189.001033. [DOI] [PubMed] [Google Scholar]
  10. Ferry D. R., Malkhandi P. J., Russell M. A., Kerr D. J. Allosteric regulation of [3H]vinblastine binding to P-glycoprotein of MCF-7 ADR cells by dexniguldipine. Biochem Pharmacol. 1995 Jun 16;49(12):1851–1861. doi: 10.1016/0006-2952(94)00517-p. [DOI] [PubMed] [Google Scholar]
  11. Ferry D. R., Russell M. A., Cullen M. H. P-glycoprotein possesses a 1,4-dihydropyridine-selective drug acceptor site which is alloserically coupled to a vinca-alkaloid-selective binding site. Biochem Biophys Res Commun. 1992 Oct 15;188(1):440–445. doi: 10.1016/0006-291x(92)92404-l. [DOI] [PubMed] [Google Scholar]
  12. Ford J. M., Hait W. N. Pharmacology of drugs that alter multidrug resistance in cancer. Pharmacol Rev. 1990 Sep;42(3):155–199. [PubMed] [Google Scholar]
  13. Gosland M. P., Lum B. L., Sikic B. I. Reversal by cefoperazone of resistance to etoposide, doxorubicin, and vinblastine in multidrug resistant human sarcoma cells. Cancer Res. 1989 Dec 15;49(24 Pt 1):6901–6905. [PubMed] [Google Scholar]
  14. Gottesman M. M., Pastan I. Biochemistry of multidrug resistance mediated by the multidrug transporter. Annu Rev Biochem. 1993;62:385–427. doi: 10.1146/annurev.bi.62.070193.002125. [DOI] [PubMed] [Google Scholar]
  15. Harker W. G., MacKintosh F. R., Sikic B. I. Development and characterization of a human sarcoma cell line, MES-SA, sensitive to multiple drugs. Cancer Res. 1983 Oct;43(10):4943–4950. [PubMed] [Google Scholar]
  16. Harker W. G., Sikic B. I. Multidrug (pleiotropic) resistance in doxorubicin-selected variants of the human sarcoma cell line MES-SA. Cancer Res. 1985 Sep;45(9):4091–4096. [PubMed] [Google Scholar]
  17. Hyafil F., Vergely C., Du Vignaud P., Grand-Perret T. In vitro and in vivo reversal of multidrug resistance by GF120918, an acridonecarboxamide derivative. Cancer Res. 1993 Oct 1;53(19):4595–4602. [PubMed] [Google Scholar]
  18. Kajiji S., Dreslin J. A., Grizzuti K., Gros P. Structurally distinct MDR modulators show specific patterns of reversal against P-glycoproteins bearing unique mutations at serine939/941. Biochemistry. 1994 May 3;33(17):5041–5048. doi: 10.1021/bi00183a006. [DOI] [PubMed] [Google Scholar]
  19. Miller T. P., Grogan T. M., Dalton W. S., Spier C. M., Scheper R. J., Salmon S. E. P-glycoprotein expression in malignant lymphoma and reversal of clinical drug resistance with chemotherapy plus high-dose verapamil. J Clin Oncol. 1991 Jan;9(1):17–24. doi: 10.1200/JCO.1991.9.1.17. [DOI] [PubMed] [Google Scholar]
  20. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983 Dec 16;65(1-2):55–63. doi: 10.1016/0022-1759(83)90303-4. [DOI] [PubMed] [Google Scholar]
  21. Raviv Y., Pollard H. B., Bruggemann E. P., Pastan I., Gottesman M. M. Photosensitized labeling of a functional multidrug transporter in living drug-resistant tumor cells. J Biol Chem. 1990 Mar 5;265(7):3975–3980. [PubMed] [Google Scholar]
  22. Scheper R. J., Broxterman H. J., Scheffer G. L., Kaaijk P., Dalton W. S., van Heijningen T. H., van Kalken C. K., Slovak M. L., de Vries E. G., van der Valk P. Overexpression of a M(r) 110,000 vesicular protein in non-P-glycoprotein-mediated multidrug resistance. Cancer Res. 1993 Apr 1;53(7):1475–1479. [PubMed] [Google Scholar]
  23. Schibler M. J., Cabral F. Taxol-dependent mutants of Chinese hamster ovary cells with alterations in alpha- and beta-tubulin. J Cell Biol. 1986 Apr;102(4):1522–1531. doi: 10.1083/jcb.102.4.1522. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Shapiro A. B., Ling V. Reconstitution of drug transport by purified P-glycoprotein. J Biol Chem. 1995 Jul 7;270(27):16167–16175. doi: 10.1074/jbc.270.27.16167. [DOI] [PubMed] [Google Scholar]
  25. Sonneveld P., Durie B. G., Lokhorst H. M., Marie J. P., Solbu G., Suciu S., Zittoun R., Löwenberg B., Nooter K. Modulation of multidrug-resistant multiple myeloma by cyclosporin. The Leukaemia Group of the EORTC and the HOVON. Lancet. 1992 Aug 1;340(8814):255–259. doi: 10.1016/0140-6736(92)92353-h. [DOI] [PubMed] [Google Scholar]
  26. Spoelstra E. C., Westerhoff H. V., Dekker H., Lankelma J. Kinetics of daunorubicin transport by P-glycoprotein of intact cancer cells. Eur J Biochem. 1992 Jul 15;207(2):567–579. doi: 10.1111/j.1432-1033.1992.tb17083.x. [DOI] [PubMed] [Google Scholar]
  27. Witherspoon S. M., Emerson D. L., Kerr B. M., Lloyd T. L., Dalton W. S., Wissel P. S. Flow cytometric assay of modulation of P-glycoprotein function in whole blood by the multidrug resistance inhibitor GG918. Clin Cancer Res. 1996 Jan;2(1):7–12. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES