Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Nov;81(6):1042–1051. doi: 10.1038/sj.bjc.6690805

High level expression of differentially localized BAG-1 isoforms in some oestrogen receptor-positive human breast cancers

M Brimmell 1, J S Burns 1, P Munson 3, L McDonald 2, M J O’Hare 2, S R Lakhani 3, G Packham 1,4
PMCID: PMC2362947  PMID: 10576663

Abstract

Sensitivity to oestrogens and apoptosis are critical determinants of the development and progression of breast cancer and reflect closely linked pathways in breast epithelial cells. For example, induction of BCL-2 oncoprotein expression by oestrogen contributes to suppression of apoptosis and BCL-2 and oestrogen receptor (ER) are frequently co-expressed in tumours. BAG-1/HAP is a multifunctional protein which complexes with BCL-2 and steroid hormone receptors (including the ER), and can suppress apoptosis and influence steroid hormone-dependent transcription. Therefore, analysis of expression of BAG-1 in human breast cancer is of considerable interest. BAG-1 was readily detected by immunostaining in normal breast epithelial cells and most ER-positive tumours, but was undetectable or weakly expressed in ER-negative tumours. BAG-1 positive cells showed a predominantly cytoplasmic or cytoplasmic plus nuclear distribution of staining. A correlation between ER and BAG-1 was also evident in breast cancer derived cell lines, as all lines examined with functional ER expression also expressed high levels of BAG-1. In addition to the prototypical 36 kDa BAG-1 isoform, breast cancer cells expressed higher molecular weight isoforms and, in contrast to BCL-2, BAG-1 expression was independent of oestrogens. BAG-1 isoforms were differentially localized to the nucleus or cytoplasm and this was also independent of oestrogens. These results demonstrate a close association between BAG-1 and functional ER expression and suggest BAG-1 may be useful as a therapeutic target or prognostic marker in breast cancer. © 1999 Cancer Research Campaign

Keywords: breast cancer, BAG-1, BCL-2, oestrogen receptor

Full Text

The Full Text of this article is available as a PDF (566.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adachi M., Sekiya M., Torigoe T., Takayama S., Reed J. C., Miyazaki T., Minami Y., Taniguchi T., Imai K. Interleukin-2 (IL-2) upregulates BAG-1 gene expression through serine-rich region within IL-2 receptor beta c chain. Blood. 1996 Dec 1;88(11):4118–4123. [PubMed] [Google Scholar]
  2. Bardelli A., Longati P., Albero D., Goruppi S., Schneider C., Ponzetto C., Comoglio P. M. HGF receptor associates with the anti-apoptotic protein BAG-1 and prevents cell death. EMBO J. 1996 Nov 15;15(22):6205–6212. [PMC free article] [PubMed] [Google Scholar]
  3. Bardon S., Vignon F., Montcourrier P., Rochefort H. Steroid receptor-mediated cytotoxicity of an antiestrogen and an antiprogestin in breast cancer cells. Cancer Res. 1987 Mar 1;47(5):1441–1448. [PubMed] [Google Scholar]
  4. Beviglia L., Matsumoto K., Lin C. S., Ziober B. L., Kramer R. H. Expression of the c-Met/HGF receptor in human breast carcinoma: correlation with tumor progression. Int J Cancer. 1997 Jun 20;74(3):301–309. doi: 10.1002/(sici)1097-0215(19970620)74:3<301::aid-ijc12>3.0.co;2-e. [DOI] [PubMed] [Google Scholar]
  5. Bhargava V., Kell D. L., van de Rijn M., Warnke R. A. Bcl-2 immunoreactivity in breast carcinoma correlates with hormone receptor positivity. Am J Pathol. 1994 Sep;145(3):535–540. [PMC free article] [PubMed] [Google Scholar]
  6. Chalbos D., Vignon F., Keydar I., Rochefort H. Estrogens stimulate cell proliferation and induce secretory proteins in a human breast cancer cell line (T47D). J Clin Endocrinol Metab. 1982 Aug;55(2):276–283. doi: 10.1210/jcem-55-2-276. [DOI] [PubMed] [Google Scholar]
  7. Clarke C., Titley J., Davies S., O'Hare M. J. An immunomagnetic separation method using superparamagnetic (MACS) beads for large-scale purification of human mammary luminal and myoepithelial cells. Epithelial Cell Biol. 1994 Jan;3(1):38–46. [PubMed] [Google Scholar]
  8. Clevenger C. V., Thickman K., Ngo W., Chang W. P., Takayama S., Reed J. C. Role of Bag-1 in the survival and proliferation of the cytokine-dependent lymphocyte lines, Ba/F3 and Nb2. Mol Endocrinol. 1997 May;11(5):608–618. doi: 10.1210/mend.11.5.9925. [DOI] [PubMed] [Google Scholar]
  9. Coradini D., Cappelletti V., Granata G., Di Fronzo G. Activity of tamoxifen and its metabolites on endocrine-dependent and endocrine-independent breast cancer cells. Tumour Biol. 1991;12(3):149–158. doi: 10.1159/000217700. [DOI] [PubMed] [Google Scholar]
  10. Engel L. W., Young N. A., Tralka T. S., Lippman M. E., O'Brien S. J., Joyce M. J. Establishment and characterization of three new continuous cell lines derived from human breast carcinomas. Cancer Res. 1978 Oct;38(10):3352–3364. [PubMed] [Google Scholar]
  11. Gioanni J., Le François D., Zanghellini E., Mazeau C., Ettore F., Lambert J. C., Schneider M., Dutrillaux B. Establishment and characterisation of a new tumorigenic cell line with a normal karyotype derived from a human breast adenocarcinoma. Br J Cancer. 1990 Jul;62(1):8–13. doi: 10.1038/bjc.1990.219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Huang Y., Ray S., Reed J. C., Ibrado A. M., Tang C., Nawabi A., Bhalla K. Estrogen increases intracellular p26Bcl-2 to p21Bax ratios and inhibits taxol-induced apoptosis of human breast cancer MCF-7 cells. Breast Cancer Res Treat. 1997 Jan;42(1):73–81. doi: 10.1023/a:1005777219997. [DOI] [PubMed] [Google Scholar]
  13. Hurst J., Maniar N., Tombarkiewicz J., Lucas F., Roberson C., Steplewski Z., James W., Perras J. A novel model of a metastatic human breast tumour xenograft line. Br J Cancer. 1993 Aug;68(2):274–276. doi: 10.1038/bjc.1993.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Höhfeld J., Jentsch S. GrpE-like regulation of the hsc70 chaperone by the anti-apoptotic protein BAG-1. EMBO J. 1997 Oct 15;16(20):6209–6216. doi: 10.1093/emboj/16.20.6209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kullmann M., Schneikert J., Moll J., Heck S., Zeiner M., Gehring U., Cato A. C. RAP46 is a negative regulator of glucocorticoid receptor action and hormone-induced apoptosis. J Biol Chem. 1998 Jun 5;273(23):14620–14625. doi: 10.1074/jbc.273.23.14620. [DOI] [PubMed] [Google Scholar]
  16. Kyprianou N., English H. F., Davidson N. E., Isaacs J. T. Programmed cell death during regression of the MCF-7 human breast cancer following estrogen ablation. Cancer Res. 1991 Jan 1;51(1):162–166. [PubMed] [Google Scholar]
  17. Landel C. C., Kushner P. J., Greene G. L. The interaction of human estrogen receptor with DNA is modulated by receptor-associated proteins. Mol Endocrinol. 1994 Oct;8(10):1407–1419. doi: 10.1210/mend.8.10.7854357. [DOI] [PubMed] [Google Scholar]
  18. Leek R. D., Kaklamanis L., Pezzella F., Gatter K. C., Harris A. L. bcl-2 in normal human breast and carcinoma, association with oestrogen receptor-positive, epidermal growth factor receptor-negative tumours and in situ cancer. Br J Cancer. 1994 Jan;69(1):135–139. doi: 10.1038/bjc.1994.22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lippman M. E., Dickson R. B. Mechanisms of growth control in normal and malignant breast epithelium. Recent Prog Horm Res. 1989;45:383–440. doi: 10.1016/b978-0-12-571145-6.50012-1. [DOI] [PubMed] [Google Scholar]
  20. Lippman M., Bolan G., Huff K. The effects of estrogens and antiestrogens on hormone-responsive human breast cancer in long-term tissue culture. Cancer Res. 1976 Dec;36(12):4595–4601. [PubMed] [Google Scholar]
  21. Liu R., Takayama S., Zheng Y., Froesch B., Chen G. Q., Zhang X., Reed J. C., Zhang X. K. Interaction of BAG-1 with retinoic acid receptor and its inhibition of retinoic acid-induced apoptosis in cancer cells. J Biol Chem. 1998 Jul 3;273(27):16985–16992. doi: 10.1074/jbc.273.27.16985. [DOI] [PubMed] [Google Scholar]
  22. Matsuzawa S., Takayama S., Froesch B. A., Zapata J. M., Reed J. C. p53-inducible human homologue of Drosophila seven in absentia (Siah) inhibits cell growth: suppression by BAG-1. EMBO J. 1998 May 15;17(10):2736–2747. doi: 10.1093/emboj/17.10.2736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Packham G., Brimmell M., Cleveland J. L. Mammalian cells express two differently localized Bag-1 isoforms generated by alternative translation initiation. Biochem J. 1997 Dec 15;328(Pt 3):807–813. doi: 10.1042/bj3280807. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Reed J. C. Double identity for proteins of the Bcl-2 family. Nature. 1997 Jun 19;387(6635):773–776. doi: 10.1038/42867. [DOI] [PubMed] [Google Scholar]
  25. Schulz J. B., Bremen D., Reed J. C., Lommatzsch J., Takayama S., Wüllner U., Löschmann P. A., Klockgether T., Weller M. Cooperative interception of neuronal apoptosis by BCL-2 and BAG-1 expression: prevention of caspase activation and reduced production of reactive oxygen species. J Neurochem. 1997 Nov;69(5):2075–2086. doi: 10.1046/j.1471-4159.1997.69052075.x. [DOI] [PubMed] [Google Scholar]
  26. Silvestrini R., Veneroni S., Daidone M. G., Benini E., Boracchi P., Mezzetti M., Di Fronzo G., Rilke F., Veronesi U. The Bcl-2 protein: a prognostic indicator strongly related to p53 protein in lymph node-negative breast cancer patients. J Natl Cancer Inst. 1994 Apr 6;86(7):499–504. doi: 10.1093/jnci/86.7.499. [DOI] [PubMed] [Google Scholar]
  27. Takayama S., Bimston D. N., Matsuzawa S., Freeman B. C., Aime-Sempe C., Xie Z., Morimoto R. I., Reed J. C. BAG-1 modulates the chaperone activity of Hsp70/Hsc70. EMBO J. 1997 Aug 15;16(16):4887–4896. doi: 10.1093/emboj/16.16.4887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Takayama S., Kochel K., Irie S., Inazawa J., Abe T., Sato T., Druck T., Huebner K., Reed J. C. Cloning of cDNAs encoding the human BAG1 protein and localization of the human BAG1 gene to chromosome 9p12. Genomics. 1996 Aug 1;35(3):494–498. doi: 10.1006/geno.1996.0389. [DOI] [PubMed] [Google Scholar]
  29. Takayama S., Krajewski S., Krajewska M., Kitada S., Zapata J. M., Kochel K., Knee D., Scudiero D., Tudor G., Miller G. J. Expression and location of Hsp70/Hsc-binding anti-apoptotic protein BAG-1 and its variants in normal tissues and tumor cell lines. Cancer Res. 1998 Jul 15;58(14):3116–3131. [PubMed] [Google Scholar]
  30. Takayama S., Sato T., Krajewski S., Kochel K., Irie S., Millan J. A., Reed J. C. Cloning and functional analysis of BAG-1: a novel Bcl-2-binding protein with anti-cell death activity. Cell. 1995 Jan 27;80(2):279–284. doi: 10.1016/0092-8674(95)90410-7. [DOI] [PubMed] [Google Scholar]
  31. Teixeira C., Reed J. C., Pratt M. A. Estrogen promotes chemotherapeutic drug resistance by a mechanism involving Bcl-2 proto-oncogene expression in human breast cancer cells. Cancer Res. 1995 Sep 1;55(17):3902–3907. [PubMed] [Google Scholar]
  32. Tuck A. B., Park M., Sterns E. E., Boag A., Elliott B. E. Coexpression of hepatocyte growth factor and receptor (Met) in human breast carcinoma. Am J Pathol. 1996 Jan;148(1):225–232. [PMC free article] [PubMed] [Google Scholar]
  33. Wakeling A. E., Dukes M., Bowler J. A potent specific pure antiestrogen with clinical potential. Cancer Res. 1991 Aug 1;51(15):3867–3873. [PubMed] [Google Scholar]
  34. Wang H. G., Takayama S., Rapp U. R., Reed J. C. Bcl-2 interacting protein, BAG-1, binds to and activates the kinase Raf-1. Proc Natl Acad Sci U S A. 1996 Jul 9;93(14):7063–7068. doi: 10.1073/pnas.93.14.7063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wilson J. W., Wakeling A. E., Morris I. D., Hickman J. A., Dive C. MCF-7 human mammary adenocarcinoma cell death in vitro in response to hormone-withdrawal and DNA damage. Int J Cancer. 1995 May 16;61(4):502–508. doi: 10.1002/ijc.2910610413. [DOI] [PubMed] [Google Scholar]
  36. Zapata J. M., Krajewska M., Krajewski S., Huang R. P., Takayama S., Wang H. G., Adamson E., Reed J. C. Expression of multiple apoptosis-regulatory genes in human breast cancer cell lines and primary tumors. Breast Cancer Res Treat. 1998 Jan;47(2):129–140. doi: 10.1023/a:1005940832123. [DOI] [PubMed] [Google Scholar]
  37. Zeiner M., Gebauer M., Gehring U. Mammalian protein RAP46: an interaction partner and modulator of 70 kDa heat shock proteins. EMBO J. 1997 Sep 15;16(18):5483–5490. doi: 10.1093/emboj/16.18.5483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Zeiner M., Gehring U. A protein that interacts with members of the nuclear hormone receptor family: identification and cDNA cloning. Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11465–11469. doi: 10.1073/pnas.92.25.11465. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES