Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Nov;81(6):989–993. doi: 10.1038/sj.bjc.6690797

Association between tissue hypoxia and elevated non-protein sulphydryl concentrations in human cervical carcinoma xenografts

F Moreno-Merlo 1,2, T Nicklee 1, D W Hedley 1,2
PMCID: PMC2362959  PMID: 10576655

Abstract

A double staining technique was developed for the simultaneous measurement of tissue hypoxia and the concentration of non-protein sulphydryls (NPSH), based on the fluorinated nitroimidazole EF5 and the fluorescent histochemical NPSH stain 1-(4-chloromercuriphenoylazo)-naphthol-2 (mercury orange). Cryostat sections of tumour tissue were examined by fluorescence image analysis, using a computer-controlled microscope stage to generate large tiled field images of the cut tumour surface. This method was applied to the human cervical squamous cell carcinoma lines ME180 and SiHa, grown as xenografts in severe combined immunodeficient (SCID) mice, in order to determine if there is a systematic relationship between tissue hypoxia and NPSH levels. Hypoxic regions of the tumours, defined by EF5 labelling, were found to show greater NPSH concentrations relative to better oxygenated regions. This is probably due to increases in glutathione, since the ME180 and SiHa xenografts contained low levels of cysteine and metallothionein; the other major cellular thiols that can bind to mercury orange. Because the effects of glutathione on radiation and chemotherapy resistance are likely to be greater under hypoxic conditions, these results have potentially important implications for the study of resistance mechanisms in solid tumours. © 1999 Cancer Research Campaign

Keywords: hypoxia, glutathione, cervical cancer, image cytometry

Full Text

The Full Text of this article is available as a PDF (543.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asghar K., Reddy B. G., Krishna G. Histochemical localization of glutathione in tissues. J Histochem Cytochem. 1975 Oct;23(10):774–779. doi: 10.1177/23.10.53246. [DOI] [PubMed] [Google Scholar]
  2. Biaglow J. E., Varnes M. E., Epp E. R., Clark E. P., Tuttle S. W., Held K. D. Role of glutathione in the aerobic radiation response. Int J Radiat Oncol Biol Phys. 1989 May;16(5):1311–1314. doi: 10.1016/0360-3016(89)90305-2. [DOI] [PubMed] [Google Scholar]
  3. Brizel D. M., Scully S. P., Harrelson J. M., Layfield L. J., Bean J. M., Prosnitz L. R., Dewhirst M. W. Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res. 1996 Mar 1;56(5):941–943. [PubMed] [Google Scholar]
  4. Brizel D. M., Sibley G. S., Prosnitz L. R., Scher R. L., Dewhirst M. W. Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck. Int J Radiat Oncol Biol Phys. 1997 May 1;38(2):285–289. doi: 10.1016/s0360-3016(97)00101-6. [DOI] [PubMed] [Google Scholar]
  5. Bump E. A., Brown J. M. Role of glutathione in the radiation response of mammalian cells in vitro and in vivo. Pharmacol Ther. 1990;47(1):117–136. doi: 10.1016/0163-7258(90)90048-7. [DOI] [PubMed] [Google Scholar]
  6. Bump E. A., Cerce B. A., al-Sarraf R., Pierce S. M., Koch C. J. Radioprotection of DNA in isolated nuclei by naturally occurring thiols at intermediate oxygen tension. Radiat Res. 1992 Oct;132(1):94–104. [PubMed] [Google Scholar]
  7. Coleman C. N., Bump E. A., Kramer R. A. Chemical modifiers of cancer treatment. J Clin Oncol. 1988 Apr;6(4):709–733. doi: 10.1200/JCO.1988.6.4.709. [DOI] [PubMed] [Google Scholar]
  8. Fyles A. W., Milosevic M., Wong R., Kavanagh M. C., Pintilie M., Sun A., Chapman W., Levin W., Manchul L., Keane T. J. Oxygenation predicts radiation response and survival in patients with cervix cancer. Radiother Oncol. 1998 Aug;48(2):149–156. doi: 10.1016/s0167-8140(98)00044-9. [DOI] [PubMed] [Google Scholar]
  9. Hockel M., Schlenger K., Aral B., Mitze M., Schaffer U., Vaupel P. Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res. 1996 Oct 1;56(19):4509–4515. [PubMed] [Google Scholar]
  10. Koch C. J., Evans S. M. Cysteine concentrations in rodent tumors: unexpectedly high values may cause therapy resistance. Int J Cancer. 1996 Sep 4;67(5):661–667. doi: 10.1002/(SICI)1097-0215(19960904)67:5<661::AID-IJC12>3.0.CO;2-8. [DOI] [PubMed] [Google Scholar]
  11. Larrauri A., López P., Gómez-Lechón M. J., Castell J. V. A cytochemical stain for glutathione in rat hepatocytes cultured on plastic. J Histochem Cytochem. 1987 Feb;35(2):271–274. doi: 10.1177/35.2.2432118. [DOI] [PubMed] [Google Scholar]
  12. Lord E. M., Harwell L., Koch C. J. Detection of hypoxic cells by monoclonal antibody recognizing 2-nitroimidazole adducts. Cancer Res. 1993 Dec 1;53(23):5721–5726. [PubMed] [Google Scholar]
  13. Meister A. Glutathione deficiency produced by inhibition of its synthesis, and its reversal; applications in research and therapy. Pharmacol Ther. 1991;51(2):155–194. doi: 10.1016/0163-7258(91)90076-x. [DOI] [PubMed] [Google Scholar]
  14. Mitchell J. B., Russo A. The role of glutathione in radiation and drug induced cytotoxicity. Br J Cancer Suppl. 1987 Jun;8:96–104. [PMC free article] [PubMed] [Google Scholar]
  15. O'Dwyer P. J., Yao K. S., Ford P., Godwin A. K., Clayton M. Effects of hypoxia on detoxicating enzyme activity and expression in HT29 colon adenocarcinoma cells. Cancer Res. 1994 Jun 15;54(12):3082–3087. [PubMed] [Google Scholar]
  16. Orta T., Eady J. J., Peacock J. H., Steel G. G. Glutathione manipulation and the radiosensitivity of human tumour and fibroblast cell lines. Int J Radiat Biol. 1995 Oct;68(4):413–419. doi: 10.1080/09553009514551371. [DOI] [PubMed] [Google Scholar]
  17. Philbert M. A., Beiswanger C. M., Waters D. K., Reuhl K. R., Lowndes H. E. Cellular and regional distribution of reduced glutathione in the nervous system of the rat: histochemical localization by mercury orange and o-phthaldialdehyde-induced histofluorescence. Toxicol Appl Pharmacol. 1991 Feb;107(2):215–227. doi: 10.1016/0041-008x(91)90204-r. [DOI] [PubMed] [Google Scholar]
  18. Prise K. M., Gillies N. E., Michael B. D. Evidence for a hypoxic fixation reaction leading to the induction of ssb and dsb in irradiated DNA. Int J Radiat Biol. 1998 Jul;74(1):53–59. doi: 10.1080/095530098141726. [DOI] [PubMed] [Google Scholar]
  19. Romero F. J., Zukowski D., Mueller-Klieser W. Glutathione content of V79 cells in two- or three-dimensional culture. Am J Physiol. 1997 May;272(5 Pt 1):C1507–C1512. doi: 10.1152/ajpcell.1997.272.5.C1507. [DOI] [PubMed] [Google Scholar]
  20. Slater A. F., Stefan C., Nobel I., van den Dobbelsteen D. J., Orrenius S. Intracellular redox changes during apoptosis. Cell Death Differ. 1996 Jan;3(1):57–62. [PubMed] [Google Scholar]
  21. Sölen G., Edgren M., Scott O. C., Révész L. Cellular glutathione content and K values. II. Int J Radiat Biol. 1989 Feb;55(2):201–210. doi: 10.1080/09553008914550251. [DOI] [PubMed] [Google Scholar]
  22. Tew K. D. Glutathione-associated enzymes in anticancer drug resistance. Cancer Res. 1994 Aug 15;54(16):4313–4320. [PubMed] [Google Scholar]
  23. Thomas M., Nicklee T., Hedley D. W. Differential effects of depleting agents on cytoplasmic and nuclear non-protein sulphydryls: a fluorescence image cytometry study. Br J Cancer. 1995 Jul;72(1):45–50. doi: 10.1038/bjc.1995.275. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES