Abstract
The anti-tumour effects and mechanism of action of combretastatin A-4 and its prodrug, combretastatin A-4 disodium phosphate, were examined in subcutaneous and orthotopically transplanted experimental colon tumour models. Additionally, the ability of these compounds to directly interfere with endothelial cell behaviour was also examined in HUVEC cultures. Combretastatin A-4 (150 mg kg–1, intraperitoneally (i.p.)) and its water-soluble prodrug (100 mg kg–1, i.p.) caused almost complete vascular shutdown (at 4 h), extensive haemorrhagic necrosis which started at 1 h after treatment and significant tumour growth delay in MAC 15A subcutaneous (s.c.) colon tumours. Similar vascular effects were obtained in MAC 15 orthotopic tumours and SW620 human colon tumour xenografts treated with the prodrug. More importantly, in the orthotopic models, necrosis was seen in vascularized metastatic deposits but not in avascular secondary deposits. The possible mechanism giving rise to these effects was examined in HUVEC cells. Here cellular networks formed in type I calf-skin collagen layers and these networks were completely disrupted when incubated with a non-cytotoxic concentration of combretastatin A-4 or its prodrug. This effect started at 4 h and was complete by 24 h. The same non-cytotoxic concentrations resulted in disorganization of F-actin and β-tubulin at 1 h after treatment. In conclusion, combretastatin A-4 and its prodrug caused extensive necrosis in MAC 15A s.c. and orthotopic colon cancer and metastases, resulting in anti-tumour effects. Necrosis was not seen in avascular tumour nodules, suggesting a vascular mechanism of action. © 1999 Cancer Research Campaign
Keywords: combretastatin A-4, anti-vascular, orthotopic, colon tumour
Full Text
The Full Text of this article is available as a PDF (1.1 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baguley B. C., Holdaway K. M., Thomsen L. L., Zhuang L., Zwi L. J. Inhibition of growth of colon 38 adenocarcinoma by vinblastine and colchicine: evidence for a vascular mechanism. Eur J Cancer. 1991;27(4):482–487. doi: 10.1016/0277-5379(91)90391-p. [DOI] [PubMed] [Google Scholar]
- Bibby M. C., Double J. A., Loadman P. M., Duke C. V. Reduction of tumor blood flow by flavone acetic acid: a possible component of therapy. J Natl Cancer Inst. 1989 Feb 1;81(3):216–220. doi: 10.1093/jnci/81.3.216. [DOI] [PubMed] [Google Scholar]
- Bibby M. C., Double J. A., Phillips R. M., Quinn P. K. Flavone acetic acid: is vascular shutdown the crucial mechanism of action. Int J Radiat Biol. 1991 Jul-Aug;60(1-2):395–399. doi: 10.1080/09553009114552231. [DOI] [PubMed] [Google Scholar]
- Bibby M. C., Phillips R. M., Double J. A. Influence of site on the chemosensitivity of transplantable murine colon tumours to flavone acetic acid (LM975, NSC 347512). Cancer Chemother Pharmacol. 1989;24(2):87–94. doi: 10.1007/BF00263126. [DOI] [PubMed] [Google Scholar]
- Bibby M. C., Phillips R. M., Double J. A., Pratesi G. Anti-tumour activity of flavone acetic acid (NSC 347512) in mice--influence of immune status. Br J Cancer. 1991 Jan;63(1):57–62. doi: 10.1038/bjc.1991.12. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bibby M. C., Sleigh N. R., Loadman P. M., Double J. A. Potentiation of EO9 anti-tumour activity by hydralazine. Eur J Cancer. 1993;29A(7):1033–1035. doi: 10.1016/s0959-8049(05)80218-7. [DOI] [PubMed] [Google Scholar]
- Borenfreund E., Babich H., Martin-Alguacil N. Rapid chemosensitivity assay with human normal and tumor cells in vitro. In Vitro Cell Dev Biol. 1990 Nov;26(11):1030–1034. doi: 10.1007/BF02624436. [DOI] [PubMed] [Google Scholar]
- Bugajski A., Nowogrodzka-Zagórska M., Leńko J., Miodoński A. J. Angiomorphology of the human renal clear cell carcinoma. A light and scanning electron microscopic study. Virchows Arch A Pathol Anat Histopathol. 1989;415(2):103–113. doi: 10.1007/BF00784347. [DOI] [PubMed] [Google Scholar]
- Ching L. M., Joseph W. R., Baguley B. C. Antitumour responses to flavone-8-acetic acid and 5,6-dimethylxanthenone-4-acetic acid in immune deficient mice. Br J Cancer. 1992 Jul;66(1):128–130. doi: 10.1038/bjc.1992.228. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cowen S. E., Bibby M. C., Double J. A. Characterisation of the vasculature within a murine adenocarcinoma growing in different sites to evaluate the potential of vascular therapies. Acta Oncol. 1995;34(3):357–360. doi: 10.3109/02841869509093989. [DOI] [PubMed] [Google Scholar]
- Dark G. G., Hill S. A., Prise V. E., Tozer G. M., Pettit G. R., Chaplin D. J. Combretastatin A-4, an agent that displays potent and selective toxicity toward tumor vasculature. Cancer Res. 1997 May 15;57(10):1829–1834. [PubMed] [Google Scholar]
- Double J. A., Ball C. R., Cowen P. N. Transplantation of adenocarcinomas of the colon in mice. J Natl Cancer Inst. 1975 Jan;54(1):271–275. doi: 10.1093/jnci/54.1.271. [DOI] [PubMed] [Google Scholar]
- Double J. A., de Castro L. C. Chemotherapy of transplantable adenocarcinomas of the colon in mice. II. Development and characterization of an ascitic line. Cancer Treat Rep. 1978 Jan;62(1):85–90. [PubMed] [Google Scholar]
- Dvorak H. F., Nagy J. A., Dvorak J. T., Dvorak A. M. Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am J Pathol. 1988 Oct;133(1):95–109. [PMC free article] [PubMed] [Google Scholar]
- Hill S. A., Sampson L. E., Chaplin D. J. Anti-vascular approaches to solid tumour therapy: evaluation of vinblastine and flavone acetic acid. Int J Cancer. 1995 Sep 27;63(1):119–123. doi: 10.1002/ijc.2910630121. [DOI] [PubMed] [Google Scholar]
- Jaffe E. A., Nachman R. L., Becker C. G., Minick C. R. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest. 1973 Nov;52(11):2745–2756. doi: 10.1172/JCI107470. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Laws A. L., Matthew A. M., Double J. A., Bibby M. C. Preclinical in vitro and in vivo activity of 5,6-dimethylxanthenone-4-acetic acid. Br J Cancer. 1995 Jun;71(6):1204–1209. doi: 10.1038/bjc.1995.234. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Maciag T., Kadish J., Wilkins L., Stemerman M. B., Weinstein R. Organizational behavior of human umbilical vein endothelial cells. J Cell Biol. 1982 Sep;94(3):511–520. doi: 10.1083/jcb.94.3.511. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mahadevan V., Malik S. T., Meager A., Fiers W., Lewis G. P., Hart I. R. Role of tumor necrosis factor in flavone acetic acid-induced tumor vasculature shutdown. Cancer Res. 1990 Sep 1;50(17):5537–5542. [PubMed] [Google Scholar]
- McGown A. T., Fox B. W. Structural and biochemical comparison of the anti-mitotic agents colchicine, combretastatin A4 and amphethinile. Anticancer Drug Des. 1989 Mar;3(4):249–254. [PubMed] [Google Scholar]
- Montesano R., Orci L., Vassalli P. In vitro rapid organization of endothelial cells into capillary-like networks is promoted by collagen matrices. J Cell Biol. 1983 Nov;97(5 Pt 1):1648–1652. doi: 10.1083/jcb.97.5.1648. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pettit G. R., Singh S. B., Hamel E., Lin C. M., Alberts D. S., Garcia-Kendall D. Isolation and structure of the strong cell growth and tubulin inhibitor combretastatin A-4. Experientia. 1989 Feb 15;45(2):209–211. doi: 10.1007/BF01954881. [DOI] [PubMed] [Google Scholar]
- Pettit G. R., Temple C., Jr, Narayanan V. L., Varma R., Simpson M. J., Boyd M. R., Rener G. A., Bansal N. Antineoplastic agents 322. synthesis of combretastatin A-4 prodrugs. Anticancer Drug Des. 1995 Jun;10(4):299–309. [PubMed] [Google Scholar]
- Rewcastle G. W., Atwell G. J., Baguley B. C., Calveley S. B., Denny W. A. Potential antitumor agents. 58. Synthesis and structure-activity relationships of substituted xanthenone-4-acetic acids active against the colon 38 tumor in vivo. J Med Chem. 1989 Apr;32(4):793–799. doi: 10.1021/jm00124a012. [DOI] [PubMed] [Google Scholar]
- Rowinsky E. K., Cazenave L. A., Donehower R. C. Taxol: a novel investigational antimicrotubule agent. J Natl Cancer Inst. 1990 Aug 1;82(15):1247–1259. doi: 10.1093/jnci/82.15.1247. [DOI] [PubMed] [Google Scholar]
- Schiff P. B., Fant J., Horwitz S. B. Promotion of microtubule assembly in vitro by taxol. Nature. 1979 Feb 22;277(5698):665–667. doi: 10.1038/277665a0. [DOI] [PubMed] [Google Scholar]
- Schiff P. B., Horwitz S. B. Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1561–1565. doi: 10.1073/pnas.77.3.1561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schor A. M., Schor S. L., Allen T. D. Effects of culture conditions on the proliferation, morphology and migration of bovine aortic endothelial cells. J Cell Sci. 1983 Jul;62:267–285. doi: 10.1242/jcs.62.1.267. [DOI] [PubMed] [Google Scholar]
- Smith K. A., Hill S. A., Begg A. C., Denekamp J. Validation of the fluorescent dye Hoechst 33342 as a vascular space marker in tumours. Br J Cancer. 1988 Mar;57(3):247–253. doi: 10.1038/bjc.1988.54. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vaupel P., Kallinowski F., Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 1989 Dec 1;49(23):6449–6465. [PubMed] [Google Scholar]
- Woods J. A., Hadfield J. A., Pettit G. R., Fox B. W., McGown A. T. The interaction with tubulin of a series of stilbenes based on combretastatin A-4. Br J Cancer. 1995 Apr;71(4):705–711. doi: 10.1038/bjc.1995.138. [DOI] [PMC free article] [PubMed] [Google Scholar]
