Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Dec;81(8):1285–1293. doi: 10.1038/sj.bjc.6694370

Schedule-dependent cytotoxicity of SN-38 in p53 wild-type and mutant colon adenocarcinoma cell lines

R H te Poele 1, S P Joel 1
PMCID: PMC2362968  PMID: 10604724

Abstract

In this study the effects of SN-38 on colon adenocarcinoma cell lines expressing wild-type p53 (LS174T) or mutant non-functional p53 (HT29) have been investigated. On exposure to SN-38, HT29 cells rapidly progressed through G1 and S and arrested in G2/M. Release and concomitant increase in apoptosis after 48 h was concentration- and time-dependent (P < 0.001), being more rapid at higher concentrations, but reaching plateau at 10 ng ml–1 with prolonged exposure. LS174T cells showed only a small increase in apoptosis, and only at high concentrations (50–100 ng ml–1). The main effect of SN-38 in LS174T cells was prolonged cell cycle arrest, which was independent of concentration. Arrest occurred in all phases of the cell cycle, with the distribution depending on concentration (P < 0.001) and not duration (P > 0.05). With increasing concentration, LS174T cells arrested in G2/M, S and G1. Cell cycle arrest was coincident with increased p53 expression in each phase of the cell cycle. Expression in G1 increased with time and concentration (P < 0.001, P = 0.01 respectively), whereas in S and G2/M p53 expression increased only with time (P < 0.001). Dose-dependent p53-associated G1 arrest, in the absence of DNA synthesis indicates an additional cytotoxic mechanism for SN-38, which requires higher concentrations than the S phase mechanism, and detection of which seems to involve p53. For incubations with the same ED (exposure × duration), apoptosis in HT29 cells was significantly higher for prolonged exposure to lower concentrations, whereas in LS174T cells there was a trend towards increased apoptosis with shorter exposures to higher concentrations, indicating a schedule effect of SN-38. Although expression of wild-type p53 leads to a more rapid induction of apoptosis, SN-38 cytotoxicity was generally greater in cells with mutant p53, as wild-type cells escaped apoptosis by p53 associated prolonged cell cycle arrest. Thus, pulsed schedules with higher doses may be more effective in cells expressing wild-type p53, whereas continued exposure with protracted schedules may be more active in cells expressing mutant p53. © 1999 Cancer Research Campaign

Keywords: SN-38, apoptosis; p53; cell cycle; schedule; colon adenocarcinoma cell lines

Full Text

The Full Text of this article is available as a PDF (158.8 KB).

Footnotes

Current address:Signal Transduction & Molecular Pharmacology Team, CRC Centre for Cancer Therapeutics, The Institute of Cancer Research, E block, Sutton, Surrey SM2 5NE, UK

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armand J. P. CPT-11: clinical experience in phase I studies. Semin Oncol. 1996 Feb;23(1 Suppl 3):27–33. [PubMed] [Google Scholar]
  2. Bendixen C., Thomsen B., Alsner J., Westergaard O. Camptothecin-stabilized topoisomerase I-DNA adducts cause premature termination of transcription. Biochemistry. 1990 Jun 12;29(23):5613–5619. doi: 10.1021/bi00475a028. [DOI] [PubMed] [Google Scholar]
  3. Bissery M. C., Vrignaud P., Lavelle F., Chabot G. G. Experimental antitumor activity and pharmacokinetics of the camptothecin analog irinotecan (CPT-11) in mice. Anticancer Drugs. 1996 Jun;7(4):437–460. doi: 10.1097/00001813-199606000-00010. [DOI] [PubMed] [Google Scholar]
  4. Burris H. A., 3rd, Hanauske A. R., Johnson R. K., Marshall M. H., Kuhn J. G., Hilsenbeck S. G., Von Hoff D. D. Activity of topotecan, a new topoisomerase I inhibitor, against human tumor colony-forming units in vitro. J Natl Cancer Inst. 1992 Dec 2;84(23):1816–1820. doi: 10.1093/jnci/84.23.1816. [DOI] [PubMed] [Google Scholar]
  5. Canal P., Gay C., Dezeuze A., Douillard J. Y., Bugat R., Brunet R., Adenis A., Herait P., Lokiec F., Mathieu-Boue A. Pharmacokinetics and pharmacodynamics of irinotecan during a phase II clinical trial in colorectal cancer. Pharmacology and Molecular Mechanisms Group of the European Organization for Research and Treatment of Cancer. J Clin Oncol. 1996 Oct;14(10):2688–2695. doi: 10.1200/JCO.1996.14.10.2688. [DOI] [PubMed] [Google Scholar]
  6. Carmichael J., DeGraff W. G., Gazdar A. F., Minna J. D., Mitchell J. B. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of radiosensitivity. Cancer Res. 1987 Feb 15;47(4):943–946. [PubMed] [Google Scholar]
  7. Catimel G., Chabot G. G., Guastalla J. P., Dumortier A., Cote C., Engel C., Gouyette A., Mathieu-Boué A., Mahjoubi M., Clavel M. Phase I and pharmacokinetic study of irinotecan (CPT-11) administered daily for three consecutive days every three weeks in patients with advanced solid tumors. Ann Oncol. 1995 Feb;6(2):133–140. doi: 10.1093/oxfordjournals.annonc.a059108. [DOI] [PubMed] [Google Scholar]
  8. Darzynkiewicz Z., Li X., Gong J. Assays of cell viability: discrimination of cells dying by apoptosis. Methods Cell Biol. 1994;41:15–38. doi: 10.1016/s0091-679x(08)61707-0. [DOI] [PubMed] [Google Scholar]
  9. Del Bino G., Skierski J. S., Darzynkiewicz Z. Diverse effects of camptothecin, an inhibitor of topoisomerase I, on the cell cycle of lymphocytic (L1210, MOLT-4) and myelogenous (HL-60, KG1) leukemic cells. Cancer Res. 1990 Sep 15;50(18):5746–5750. [PubMed] [Google Scholar]
  10. Di Leonardo A., Linke S. P., Clarkin K., Wahl G. M. DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev. 1994 Nov 1;8(21):2540–2551. doi: 10.1101/gad.8.21.2540. [DOI] [PubMed] [Google Scholar]
  11. Dubrez L., Goldwasser F., Genne P., Pommier Y., Solary E. The role of cell cycle regulation and apoptosis triggering in determining the sensitivity of leukemic cells to topoisomerase I and II inhibitors. Leukemia. 1995 Jun;9(6):1013–1024. [PubMed] [Google Scholar]
  12. Fukuoka M., Masuda N. Clinical studies of irinotecan alone and in combination with cisplatin. Cancer Chemother Pharmacol. 1994;34 (Suppl):S105–S111. doi: 10.1007/BF00684873. [DOI] [PubMed] [Google Scholar]
  13. Goldwasser F., Shimizu T., Jackman J., Hoki Y., O'Connor P. M., Kohn K. W., Pommier Y. Correlations between S and G2 arrest and the cytotoxicity of camptothecin in human colon carcinoma cells. Cancer Res. 1996 Oct 1;56(19):4430–4437. [PubMed] [Google Scholar]
  14. Hochster H., Liebes L., Speyer J., Sorich J., Taubes B., Oratz R., Wernz J., Chachoua A., Raphael B., Vinci R. Z. Phase I trial of low-dose continuous topotecan infusion in patients with cancer: an active and well-tolerated regimen. J Clin Oncol. 1994 Mar;12(3):553–559. doi: 10.1200/JCO.1994.12.3.553. [DOI] [PubMed] [Google Scholar]
  15. Horiguchi T., Hayashi K., Tsubotani S., Iinuma S., Harada S., Tanida S. New naphthacenecarboxamide antibiotics, TAN-1518 A and B, have inhibitory activity against mammalian DNA topoisomerase I. J Antibiot (Tokyo) 1994 May;47(5):545–556. doi: 10.7164/antibiotics.47.545. [DOI] [PubMed] [Google Scholar]
  16. Houghton P. J., Cheshire P. J., Hallman J. D., 2nd, Lutz L., Friedman H. S., Danks M. K., Houghton J. A. Efficacy of topoisomerase I inhibitors, topotecan and irinotecan, administered at low dose levels in protracted schedules to mice bearing xenografts of human tumors. Cancer Chemother Pharmacol. 1995;36(5):393–403. doi: 10.1007/BF00686188. [DOI] [PubMed] [Google Scholar]
  17. Hsiang Y. H., Hertzberg R., Hecht S., Liu L. F. Camptothecin induces protein-linked DNA breaks via mammalian DNA topoisomerase I. J Biol Chem. 1985 Nov 25;260(27):14873–14878. [PubMed] [Google Scholar]
  18. Hsiang Y. H., Lihou M. G., Liu L. F. Arrest of replication forks by drug-stabilized topoisomerase I-DNA cleavable complexes as a mechanism of cell killing by camptothecin. Cancer Res. 1989 Sep 15;49(18):5077–5082. [PubMed] [Google Scholar]
  19. Hsiang Y. H., Liu L. F. Identification of mammalian DNA topoisomerase I as an intracellular target of the anticancer drug camptothecin. Cancer Res. 1988 Apr 1;48(7):1722–1726. [PubMed] [Google Scholar]
  20. Kawato Y., Furuta T., Aonuma M., Yasuoka M., Yokokura T., Matsumoto K. Antitumor activity of a camptothecin derivative, CPT-11, against human tumor xenografts in nude mice. Cancer Chemother Pharmacol. 1991;28(3):192–198. doi: 10.1007/BF00685508. [DOI] [PubMed] [Google Scholar]
  21. Liu L. F. DNA topoisomerase poisons as antitumor drugs. Annu Rev Biochem. 1989;58:351–375. doi: 10.1146/annurev.bi.58.070189.002031. [DOI] [PubMed] [Google Scholar]
  22. Muggia F. M., Creaven P. J., Hansen H. H., Cohen M. H., Selawry O. S. Phase I clinical trial of weekly and daily treatment with camptothecin (NSC-100880): correlation with preclinical studies. Cancer Chemother Rep. 1972 Aug;56(4):515–521. [PubMed] [Google Scholar]
  23. Nelson W. G., Kastan M. B. DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA damage response pathways. Mol Cell Biol. 1994 Mar;14(3):1815–1823. doi: 10.1128/mcb.14.3.1815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pantazis P., Mendoza J. T., Early J. A., Kozielski A. J., Natelson E. A., Giovanella B. C. 9-Nitro-camptothecin delays growth of U-937 leukemia tumors in nude mice and is cytotoxic or cytostatic for human myelomonocytic leukemia lines in vitro. Eur J Haematol. 1993 Feb;50(2):81–89. doi: 10.1111/j.1600-0609.1993.tb00146.x. [DOI] [PubMed] [Google Scholar]
  25. Poot M., Hiller K. H., Heimpel S., Hoehn H. Distinct patterns of cell cycle disturbance elicited by compounds interfering with DNA topoisomerase I and II activity. Exp Cell Res. 1995 May;218(1):326–330. doi: 10.1006/excr.1995.1162. [DOI] [PubMed] [Google Scholar]
  26. Rolley N., Butcher S., Milner J. Specific DNA binding by different classes of human p53 mutants. Oncogene. 1995 Aug 17;11(4):763–770. [PubMed] [Google Scholar]
  27. Rubin E., Pantazis P., Bharti A., Toppmeyer D., Giovanella B., Kufe D. Identification of a mutant human topoisomerase I with intact catalytic activity and resistance to 9-nitro-camptothecin. J Biol Chem. 1994 Jan 28;269(4):2433–2439. [PubMed] [Google Scholar]
  28. Slichenmyer W. J., Rowinsky E. K., Grochow L. B., Kaufmann S. H., Donehower R. C. Camptothecin analogues: studies from the Johns Hopkins Oncology Center. Cancer Chemother Pharmacol. 1994;34 (Suppl):S53–S57. doi: 10.1007/BF00684864. [DOI] [PubMed] [Google Scholar]
  29. Solary E., Dubrez L., Eymin B., Bertrand R., Pommier Y. Apoptose des cellules leucémiques humaines induite par les inhibiteurs de topo-isomérase I et II. Bull Cancer. 1996 Mar;83(3):205–212. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES