Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Dec;81(8):1410–1418. doi: 10.1038/sj.bjc.6693372

Genetic alterations on chromosome 16 and 17 are important features of ductal carcinoma in situ of the breast and are associated with histologic type

C B J Vos 1, N T ter Haar 1, C Rosenberg 2, J L Peterse 3, A-M Cleton-Jansen 1, C J Cornelisse 1, M J van de Vijver 1,3
PMCID: PMC2362977  PMID: 10604741

Abstract

We analysed the involvement of known and putative tumour suppressor- and oncogene loci in ductal carcinoma in situ (DCIS) by microsatellite analysis (LOH), Southern blotting and comparative genomic hybridization (CGH). A total of 78 pure DCIS cases, classified histologically as well, intermediately and poorly differentiated, were examined for LOH with 76 markers dispersed along all chromosome arms. LOH on chromosome 17 was more frequent in poorly differentiated DCIS (70%) compared to well-differentiated DCIS (17%), whereas loss on chromosome 16 was associated with well- and intermediately differentiated DCIS (66%). For a subset we have done Southern blot- and CGH analysis. C-erbB2/neu was amplified in 30% of poorly differentiated DCIS. No amplification was found of c-myc, mdm2, bek, flg and the epidermal growth factor (EGF)-receptor. By CGH, most frequent alterations in poorly differentiated DCIS were gains on 8q and 17q22–24 and deletion on 17p, whereas in well-differentiated DCIS amplification on chromosome 1q and deletion on 16q were found. In conclusion, our data indicates that inactivation of a yet unknown tumour suppressor gene on chromosome 16q is implicated in the development of most well and intermediately differentiated DCIS whereas amplification and inactivation of various genes on chromosome 17 are implicated in the development of poorly differentiated DCIS. Furthermore these data show that there is a genetic basis for the classification of DCIS in a well and poorly differentiated type and support the evidence of different genetic routes to develop a specific type of carcinoma in situ of the breast. © 1999 Cancer Research Campaign

Keywords: DCIS, LOH, amplification, CGH, Southern blot analysis

Full Text

The Full Text of this article is available as a PDF (477.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams J. M., Harris A. W., Pinkert C. A., Corcoran L. M., Alexander W. S., Cory S., Palmiter R. D., Brinster R. L. The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature. 1985 Dec 12;318(6046):533–538. doi: 10.1038/318533a0. [DOI] [PubMed] [Google Scholar]
  2. Adnane J., Gaudray P., Dionne C. A., Crumley G., Jaye M., Schlessinger J., Jeanteur P., Birnbaum D., Theillet C. BEK and FLG, two receptors to members of the FGF family, are amplified in subsets of human breast cancers. Oncogene. 1991 Apr;6(4):659–663. [PubMed] [Google Scholar]
  3. Aldaz C. M., Chen T., Sahin A., Cunningham J., Bondy M. Comparative allelotype of in situ and invasive human breast cancer: high frequency of microsatellite instability in lobular breast carcinomas. Cancer Res. 1995 Sep 15;55(18):3976–3981. [PubMed] [Google Scholar]
  4. Berns E. M., Klijn J. G., van Putten W. L., van Staveren I. L., Portengen H., Foekens J. A. c-myc amplification is a better prognostic factor than HER2/neu amplification in primary breast cancer. Cancer Res. 1992 Mar 1;52(5):1107–1113. [PubMed] [Google Scholar]
  5. Berx G., Cleton-Jansen A. M., Nollet F., de Leeuw W. J., van de Vijver M., Cornelisse C., van Roy F. E-cadherin is a tumour/invasion suppressor gene mutated in human lobular breast cancers. EMBO J. 1995 Dec 15;14(24):6107–6115. doi: 10.1002/j.1460-2075.1995.tb00301.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Berx G., Cleton-Jansen A. M., Strumane K., de Leeuw W. J., Nollet F., van Roy F., Cornelisse C. E-cadherin is inactivated in a majority of invasive human lobular breast cancers by truncation mutations throughout its extracellular domain. Oncogene. 1996 Nov 7;13(9):1919–1925. [PubMed] [Google Scholar]
  7. Bobrow L. G., Happerfield L. C., Gregory W. M., Springall R. D., Millis R. R. The classification of ductal carcinoma in situ and its association with biological markers. Semin Diagn Pathol. 1994 Aug;11(3):199–207. [PubMed] [Google Scholar]
  8. Chitemerere M., Andersen T. I., Holm R., Karlsen F., Børresen A. L., Nesland J. M. TP53 alterations in atypical ductal hyperplasia and ductal carcinoma in situ of the breast. Breast Cancer Res Treat. 1996;41(2):103–109. doi: 10.1007/BF01807155. [DOI] [PubMed] [Google Scholar]
  9. Cleton-Jansen A. M., Moerland E. W., Kuipers-Dijkshoorn N. J., Callen D. F., Sutherland G. R., Hansen B., Devilee P., Cornelisse C. J. At least two different regions are involved in allelic imbalance on chromosome arm 16q in breast cancer. Genes Chromosomes Cancer. 1994 Feb;9(2):101–107. doi: 10.1002/gcc.2870090205. [DOI] [PubMed] [Google Scholar]
  10. Coene E. D., Schelfhout V., Winkler R. A., Schelfhout A. M., Van Roy N., Grooteclaes M., Speleman F., De Potter C. R. Amplification units and translocation at chromosome 17q and c-erbB-2 overexpression in the pathogenesis of breast cancer. Virchows Arch. 1997 May;430(5):365–372. doi: 10.1007/s004280050045. [DOI] [PubMed] [Google Scholar]
  11. Devilee P., Cornelisse C. J. Somatic genetic changes in human breast cancer. Biochim Biophys Acta. 1994 Dec 30;1198(2-3):113–130. doi: 10.1016/0304-419x(94)90009-4. [DOI] [PubMed] [Google Scholar]
  12. Done S. J., Arneson N. C., Ozçelik H., Redston M., Andrulis I. L. p53 mutations in mammary ductal carcinoma in situ but not in epithelial hyperplasias. Cancer Res. 1998 Feb 15;58(4):785–789. [PubMed] [Google Scholar]
  13. Fujii H., Szumel R., Marsh C., Zhou W., Gabrielson E. Genetic progression, histological grade, and allelic loss in ductal carcinoma in situ of the breast. Cancer Res. 1996 Nov 15;56(22):5260–5265. [PubMed] [Google Scholar]
  14. Gupta P. K., Sahota A., Boyadjiev S. A., Bye S., Shao C., O'Neill J. P., Hunter T. C., Albertini R. J., Stambrook P. J., Tischfield J. A. High frequency in vivo loss of heterozygosity is primarily a consequence of mitotic recombination. Cancer Res. 1997 Mar 15;57(6):1188–1193. [PubMed] [Google Scholar]
  15. Holland R., Peterse J. L., Millis R. R., Eusebi V., Faverly D., van de Vijver M. J., Zafrani B. Ductal carcinoma in situ: a proposal for a new classification. Semin Diagn Pathol. 1994 Aug;11(3):167–180. [PubMed] [Google Scholar]
  16. Isola J., DeVries S., Chu L., Ghazvini S., Waldman F. Analysis of changes in DNA sequence copy number by comparative genomic hybridization in archival paraffin-embedded tumor samples. Am J Pathol. 1994 Dec;145(6):1301–1308. [PMC free article] [PubMed] [Google Scholar]
  17. James L. A., Mitchell E. L., Menasce L., Varley J. M. Comparative genomic hybridisation of ductal carcinoma in situ of the breast: identification of regions of DNA amplification and deletion in common with invasive breast carcinoma. Oncogene. 1997 Mar 6;14(9):1059–1065. doi: 10.1038/sj.onc.1200923. [DOI] [PubMed] [Google Scholar]
  18. Kallioniemi A., Kallioniemi O. P., Sudar D., Rutovitz D., Gray J. W., Waldman F., Pinkel D. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science. 1992 Oct 30;258(5083):818–821. doi: 10.1126/science.1359641. [DOI] [PubMed] [Google Scholar]
  19. Kallioniemi O. P., Kallioniemi A., Piper J., Isola J., Waldman F. M., Gray J. W., Pinkel D. Optimizing comparative genomic hybridization for analysis of DNA sequence copy number changes in solid tumors. Genes Chromosomes Cancer. 1994 Aug;10(4):231–243. doi: 10.1002/gcc.2870100403. [DOI] [PubMed] [Google Scholar]
  20. Kanai Y., Oda T., Tsuda H., Ochiai A., Hirohashi S. Point mutation of the E-cadherin gene in invasive lobular carcinoma of the breast. Jpn J Cancer Res. 1994 Oct;85(10):1035–1039. doi: 10.1111/j.1349-7006.1994.tb02902.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kuukasjärvi T., Tanner M., Pennanen S., Karhu R., Kallioniemi O. P., Isola J. Genetic changes in intraductal breast cancer detected by comparative genomic hybridization. Am J Pathol. 1997 Apr;150(4):1465–1471. [PMC free article] [PubMed] [Google Scholar]
  22. Livingstone L. R., White A., Sprouse J., Livanos E., Jacks T., Tlsty T. D. Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell. 1992 Sep 18;70(6):923–935. doi: 10.1016/0092-8674(92)90243-6. [DOI] [PubMed] [Google Scholar]
  23. Mack L., Kerkvliet N., Doig G., O'Malley F. P. Relationship of a new histological categorization of ductal carcinoma in situ of the breast with size and the immunohistochemical expression of p53, c-erb B2, bcl-2, and ki-67. Hum Pathol. 1997 Aug;28(8):974–979. doi: 10.1016/s0046-8177(97)90014-9. [DOI] [PubMed] [Google Scholar]
  24. Marchetti A., Buttitta F., Girlando S., Dalla Palma P., Pellegrini S., Fina P., Doglioni C., Bevilacqua G., Barbareschi M. mdm2 gene alterations and mdm2 protein expression in breast carcinomas. J Pathol. 1995 Jan;175(1):31–38. doi: 10.1002/path.1711750106. [DOI] [PubMed] [Google Scholar]
  25. Miki Y., Swensen J., Shattuck-Eidens D., Futreal P. A., Harshman K., Tavtigian S., Liu Q., Cochran C., Bennett L. M., Ding W. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 1994 Oct 7;266(5182):66–71. doi: 10.1126/science.7545954. [DOI] [PubMed] [Google Scholar]
  26. Munn K. E., Walker R. A., Menasce L., Varley J. M. Allelic imbalance in the region of the BRCA1 gene in ductal carcinoma in situ of the breast. Br J Cancer. 1996 Mar;73(5):636–639. doi: 10.1038/bjc.1996.110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Munn K. E., Walker R. A., Menasce L., Varley J. M. Mutation of the TP53 gene and allelic imbalance at chromosome 17p13 in ductal carcinoma in situ. Br J Cancer. 1996 Nov;74(10):1578–1585. doi: 10.1038/bjc.1996.592. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Murphy D. S., Hoare S. F., Going J. J., Mallon E. E., George W. D., Kaye S. B., Brown R., Black D. M., Keith W. N. Characterization of extensive genetic alterations in ductal carcinoma in situ by fluorescence in situ hybridization and molecular analysis. J Natl Cancer Inst. 1995 Nov 15;87(22):1694–1704. doi: 10.1093/jnci/87.22.1694. [DOI] [PubMed] [Google Scholar]
  29. Oliner J. D., Kinzler K. W., Meltzer P. S., George D. L., Vogelstein B. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature. 1992 Jul 2;358(6381):80–83. doi: 10.1038/358080a0. [DOI] [PubMed] [Google Scholar]
  30. Radford D. M., Fair K. L., Phillips N. J., Ritter J. H., Steinbrueck T., Holt M. S., Donis-Keller H. Allelotyping of ductal carcinoma in situ of the breast: deletion of loci on 8p, 13q, 16q, 17p and 17q. Cancer Res. 1995 Aug 1;55(15):3399–3405. [PubMed] [Google Scholar]
  31. Simpson J. F., Quan D. E., O'Malley F., Odom-Maryon T., Clarke P. E. Amplification of CCND1 and expression of its protein product, cyclin D1, in ductal carcinoma in situ of the breast. Am J Pathol. 1997 Jul;151(1):161–168. [PMC free article] [PubMed] [Google Scholar]
  32. Tsuda H., Callen D. F., Fukutomi T., Nakamura Y., Hirohashi S. Allele loss on chromosome 16q24.2-qter occurs frequently in breast cancers irrespectively of differences in phenotype and extent of spread. Cancer Res. 1994 Jan 15;54(2):513–517. [PubMed] [Google Scholar]
  33. Ullrich A., Coussens L., Hayflick J. S., Dull T. J., Gray A., Tam A. W., Lee J., Yarden Y., Libermann T. A., Schlessinger J. Human epidermal growth factor receptor cDNA sequence and aberrant expression of the amplified gene in A431 epidermoid carcinoma cells. 1984 May 31-Jun 6Nature. 309(5967):418–425. doi: 10.1038/309418a0. [DOI] [PubMed] [Google Scholar]
  34. Varley J. M., Swallow J. E., Brammar W. J., Whittaker J. L., Walker R. A. Alterations to either c-erbB-2(neu) or c-myc proto-oncogenes in breast carcinomas correlate with poor short-term prognosis. Oncogene. 1987;1(4):423–430. [PubMed] [Google Scholar]
  35. Vogelstein B., Fearon E. R., Hamilton S. R., Kern S. E., Preisinger A. C., Leppert M., Nakamura Y., White R., Smits A. M., Bos J. L. Genetic alterations during colorectal-tumor development. N Engl J Med. 1988 Sep 1;319(9):525–532. doi: 10.1056/NEJM198809013190901. [DOI] [PubMed] [Google Scholar]
  36. Vos C. B., Cleton-Jansen A. M., Berx G., de Leeuw W. J., ter Haar N. T., van Roy F., Cornelisse C. J., Peterse J. L., van de Vijver M. J. E-cadherin inactivation in lobular carcinoma in situ of the breast: an early event in tumorigenesis. Br J Cancer. 1997;76(9):1131–1133. doi: 10.1038/bjc.1997.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Yamamoto T., Ikawa S., Akiyama T., Semba K., Nomura N., Miyajima N., Saito T., Toyoshima K. Similarity of protein encoded by the human c-erb-B-2 gene to epidermal growth factor receptor. Nature. 1986 Jan 16;319(6050):230–234. doi: 10.1038/319230a0. [DOI] [PubMed] [Google Scholar]
  38. Zafrani B., Leroyer A., Fourquet A., Laurent M., Trophilme D., Validire P., Sastre-Garau X. Mammographically-detected ductal in situ carcinoma of the breast analyzed with a new classification. A study of 127 cases: correlation with estrogen and progesterone receptors, p53 and c-erbB-2 proteins, and proliferative activity. Semin Diagn Pathol. 1994 Aug;11(3):208–214. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES