Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Apr;80(1-2):32–37. doi: 10.1038/sj.bjc.6690317

Glutathione-linked enzymes in benign and malignant oesophageal tissue

R D Levy 1, M M J Oosthuizen 1, E Degiannis 1, D Greyling 1, C Hatzitheofilou 1
PMCID: PMC2362993  PMID: 10389974

Abstract

Oxyradicals are involved in multiple mutational events and can contribute to the conversion of healthy cells to cancer cells. Glutathione (GSH) and the GSH-replenishing enzymes keep the antioxidant status of normal cells at a level where they can avert oxyradical derived mutations. The aim of this study was to determine whether in cancer cells the GSH-replenishing, GSH antioxidant and GSH-depleting enzymes were not at appropriate levels and therefore not able to protect cancer cells adequately against oxyradical-induced mutations. Cancer of the oesophagus was chosen since it is the most common gastrointestinal malignancy in South African Blacks. Biopsies and blood from 31 patients with cancer of the oesophagus and 29 non-cancer patients were assessed for these enzymes. The mean activity of the antioxidant and depleting enzyme GSH-peroxidase was elevated significantly by twofold in the cancer tissue compared to normal tissue. However, the activity of the replenishing enzyme GSSG-reductase and the level of the depleting enzyme GSH-s-transferase P1-isoenzyme were significantly reduced by 23% and 33% respectively. As in a previous paper we found that GSH was depleted and γ-glutamine transpeptidase was diminished in oesophageal cancer. There can be two reasons for GSH depletion. Firstly, elevated GSH–peroxidase will use more GSH in an attempt to cope with the excessive production of oxyradicals as revealed by elevated lipid peroxidation; this was, as shown by us before, elevated sixfold in oesophageal cancer. Secondly, if little replenishment of GSH occurred the level of GSH would become lower. This was confirmed by our findings that the activities of the replenishing enzymes were significantly diminished in oesophageal cancer tissue. Contrary to what was expected, the other depleting enzyme GSH-s-transferase P1 was not elevated in cancer tissue but was significantly lower. However, in the blood of the same patients it was significantly elevated. An explanation for this phenomenon is that, although the production of GST-P1 was enhanced in cancer, it did not show because it was rapidly extruded into the blood by an unknown mechanism operational only in cancer cells. © 1999 Cancer Research Campaign

Keywords: GSH-peroxidase, GSSG-reductase, GSH-s-transferase P1-isoenzyme, oesophageal cancer

Full Text

The Full Text of this article is available as a PDF (96.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames B. N., Shigenaga M. K., Hagen T. M. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):7915–7922. doi: 10.1073/pnas.90.17.7915. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Basu A. K., Marnett L. J. Unequivocal demonstration that malondialdehyde is a mutagen. Carcinogenesis. 1983;4(3):331–333. doi: 10.1093/carcin/4.3.331. [DOI] [PubMed] [Google Scholar]
  3. Beutler E. Effect of flavin compounds on glutathione reductase activity: in vivo and in vitro studies. J Clin Invest. 1969 Oct;48(10):1957–1966. doi: 10.1172/JCI106162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bhuvarahamurthy V., Balasubramanian N., Govindasamy S. Effect of radiotherapy and chemoradiotherapy on circulating antioxidant system of human uterine cervical carcinoma. Mol Cell Biochem. 1996 May 10;158(1):17–23. doi: 10.1007/BF00225878. [DOI] [PubMed] [Google Scholar]
  5. Brockmöller J., Kerb R., Drakoulis N., Nitz M., Roots I. Genotype and phenotype of glutathione S-transferase class mu isoenzymes mu and psi in lung cancer patients and controls. Cancer Res. 1993 Mar 1;53(5):1004–1011. [PubMed] [Google Scholar]
  6. Campbell J. A., Corrigall A. V., Guy A., Kirsch R. E. Immunohistologic localization of alpha, mu, and pi class glutathione S-transferases in human tissues. Cancer. 1991 Mar 15;67(6):1608–1613. doi: 10.1002/1097-0142(19910315)67:6<1608::aid-cncr2820670623>3.0.co;2-s. [DOI] [PubMed] [Google Scholar]
  7. Chen J., Geissler C., Parpia B., Li J., Campbell T. C. Antioxidant status and cancer mortality in China. Int J Epidemiol. 1992 Aug;21(4):625–635. doi: 10.1093/ije/21.4.625. [DOI] [PubMed] [Google Scholar]
  8. Durak I., Bayram F., Kavutcu M., Canbolat O., Oztürk H. S. Impaired enzymatic antioxidant defense mechanism in cancerous human thyroid tissues. J Endocrinol Invest. 1996 May;19(5):312–315. doi: 10.1007/BF03347868. [DOI] [PubMed] [Google Scholar]
  9. Eriksson L. C., Andersson G. N. Membrane biochemistry and chemical hepatocarcinogenesis. Crit Rev Biochem Mol Biol. 1992;27(1-2):1–55. doi: 10.3109/10409239209082558. [DOI] [PubMed] [Google Scholar]
  10. Fan K. C., Huang Y. C., Li C. H. Radioimmunoassay for plasma glutathione S-transferase-pi and its clinical application in gastrointestinal cancer. Cancer. 1995 Oct 15;76(8):1363–1367. doi: 10.1002/1097-0142(19951015)76:8<1363::aid-cncr2820760811>3.0.co;2-4. [DOI] [PubMed] [Google Scholar]
  11. Flohé L., Günzler W. A. Assays of glutathione peroxidase. Methods Enzymol. 1984;105:114–121. doi: 10.1016/s0076-6879(84)05015-1. [DOI] [PubMed] [Google Scholar]
  12. Floyd R. A. The role of 8-hydroxyguanine in carcinogenesis. Carcinogenesis. 1990 Sep;11(9):1447–1450. doi: 10.1093/carcin/11.9.1447. [DOI] [PubMed] [Google Scholar]
  13. Gajewska J., Szczypka M. Role of pi form of glutathione S-transferase (GST-pi) in cancer: a minireview. Mater Med Pol. 1992 Jan-Mar;24(1):45–49. [PubMed] [Google Scholar]
  14. Guyton K. Z., Kensler T. W. Oxidative mechanisms in carcinogenesis. Br Med Bull. 1993 Jul;49(3):523–544. doi: 10.1093/oxfordjournals.bmb.a072628. [DOI] [PubMed] [Google Scholar]
  15. Halliwell B., Gutteridge J. M. Biologically relevant metal ion-dependent hydroxyl radical generation. An update. FEBS Lett. 1992 Jul 27;307(1):108–112. doi: 10.1016/0014-5793(92)80911-y. [DOI] [PubMed] [Google Scholar]
  16. Hayes J. D., Pulford D. J. The glutathione S-transferase supergene family: regulation of GST and the contribution of the isoenzymes to cancer chemoprotection and drug resistance. Crit Rev Biochem Mol Biol. 1995;30(6):445–600. doi: 10.3109/10409239509083491. [DOI] [PubMed] [Google Scholar]
  17. Howie A. F., Douglas J. G., Fergusson R. J., Beckett G. J. Measurement of glutathione S-transferase pi isoenzyme in plasma, a possible marker for adenocarcinoma of the lung. Clin Chem. 1990 Mar;36(3):453–456. [PubMed] [Google Scholar]
  18. Ishioka C., Kanamaru R., Shibata H., Konishi Y., Ishikawa A., Wakui A., Sato T., Nishihira T. Expression of glutathione S-transferase-pi messenger RNA in human esophageal cancers. Cancer. 1991 May 15;67(10):2560–2564. doi: 10.1002/1097-0142(19910515)67:10<2560::aid-cncr2820671028>3.0.co;2-m. [DOI] [PubMed] [Google Scholar]
  19. Jendryczko A., Pardela M., Kozlowski A. Erythrocyte glutathione peroxidase in patients with colon cancer. Neoplasma. 1993;40(2):107–109. [PubMed] [Google Scholar]
  20. Kura T., Takahashi Y., Takayama T., Ban N., Saito T., Kuga T., Niitsu Y. Glutathione S-transferase-pi is secreted as a monomer into human plasma by platelets and tumor cells. Biochim Biophys Acta. 1996 Feb 8;1292(2):317–323. doi: 10.1016/0167-4838(95)00216-2. [DOI] [PubMed] [Google Scholar]
  21. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  22. Levy R. D., Oosthuizen M. M., Degiannis E., Lambrechts H. Elevated reversible and irreversible lipid peroxidation in human oesophageal cancer. Anticancer Res. 1998 Mar-Apr;18(2B):1325–1328. [PubMed] [Google Scholar]
  23. Masotti L., Casali E., Gesmundo N., Sartor G., Galeotti T., Borrello S., Piretti M. V., Pagliuca G. Lipid peroxidation in cancer cells: chemical and physical studies. Ann N Y Acad Sci. 1988;551:47–58. doi: 10.1111/j.1749-6632.1988.tb22319.x. [DOI] [PubMed] [Google Scholar]
  24. McCormack A., Hunter-Smith D., Piotrowski Z. H., Grant M., Kubik S., Kessel K. Analgesic use in home hospice cancer patients. J Fam Pract. 1992 Feb;34(2):160–164. [PubMed] [Google Scholar]
  25. Miura K., Suzuki S., Tanita J., Shinkawa H., Satoh K., Tsuchida S. Correlated expression of glutathione S-transferase-pi and c-Jun or other oncogene products in human squamous cell carcinomas of the head and neck: relevance to relapse after radiation therapy. Jpn J Cancer Res. 1997 Feb;88(2):143–151. doi: 10.1111/j.1349-7006.1997.tb00359.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mukai F. H., Goldstein B. D. Mutagenicity of malonaldehyde, a decomposition product of peroxidized polyunsaturated fatty acids. Science. 1976 Feb 27;191(4229):868–869. doi: 10.1126/science.766187. [DOI] [PubMed] [Google Scholar]
  27. Mulder T. P., Manni J. J., Roelofs H. M., Peters W. H., Wiersma A. Glutathione peroxidases in human head and neck cancer. Acta Otolaryngol. 1995 Mar;115(2):331–333. doi: 10.3109/00016489509139323. [DOI] [PubMed] [Google Scholar]
  28. Niitsu Y., Takahashi Y., Saito T., Hirata Y., Arisato N., Maruyama H., Kohgo Y., Listowsky I. Serum glutathione-S-transferase-pi as a tumor marker for gastrointestinal malignancies. Cancer. 1989 Jan 15;63(2):317–323. doi: 10.1002/1097-0142(19890115)63:2<317::aid-cncr2820630219>3.0.co;2-p. [DOI] [PubMed] [Google Scholar]
  29. Peters W. H., Wobbes T., Roelofs H. M., Jansen J. B. Glutathione S-transferases in esophageal cancer. Carcinogenesis. 1993 Jul;14(7):1377–1380. doi: 10.1093/carcin/14.7.1377. [DOI] [PubMed] [Google Scholar]
  30. Peters W. H., Wormskamp N. G., Thies E. Expression of glutathione S-transferases in normal gastric mucosa and in gastric tumors. Carcinogenesis. 1990 Sep;11(9):1593–1596. doi: 10.1093/carcin/11.9.1593. [DOI] [PubMed] [Google Scholar]
  31. Rees G. W., Trull A. K., Doyle S. Evaluation of an enzyme-immunometric assay for serum alpha-glutathione S-transferase. Ann Clin Biochem. 1995 Nov;32(Pt 6):575–583. doi: 10.1177/000456329503200610. [DOI] [PubMed] [Google Scholar]
  32. Ribeiro U., Safatle-Ribeiro A. V., Posner M. C., Rosendale B., Bakker A., Swalsky P. A., Kim R., Reynolds J. C., Finkelstein S. D. Comparative p53 mutational analysis of multiple primary cancers of the upper aerodigestive tract. Surgery. 1996 Jul;120(1):45–53. doi: 10.1016/s0039-6060(96)80240-6. [DOI] [PubMed] [Google Scholar]
  33. Sasano H., Miuazaki S., Shiga K., Goukon Y., Nishihira T., Nagura H. Glutathione S-transferase in human esophageal carcinoma. Anticancer Res. 1993 Mar-Apr;13(2):363–368. [PubMed] [Google Scholar]
  34. Sevanian A., Muakkassah-Kelly S. F., Montestruque S. The influence of phospholipase A2 and glutathione peroxidase on the elimination of membrane lipid peroxides. Arch Biochem Biophys. 1983 Jun;223(2):441–452. doi: 10.1016/0003-9861(83)90608-2. [DOI] [PubMed] [Google Scholar]
  35. Simmons T. W., Jamall I. S. Significance of alterations in hepatic antioxidant enzymes. Primacy of glutathione peroxidase. Biochem J. 1988 May 1;251(3):913–917. doi: 10.1042/bj2510913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Theologides A., Ingersoll-Stroubos A. M., Apple F. S. TNF-alpha effect on oxygen free radical scavenging and generating enzymes in rat liver. Biochem Mol Biol Int. 1994 May;33(1):205–210. [PubMed] [Google Scholar]
  37. Tsuchida S., Sato K. Glutathione transferases and cancer. Crit Rev Biochem Mol Biol. 1992;27(4-5):337–384. doi: 10.3109/10409239209082566. [DOI] [PubMed] [Google Scholar]
  38. Tsuchida S., Sekine Y., Shineha R., Nishihira T., Sato K. Elevation of the placental glutathione S-transferase form (GST-pi) in tumor tissues and the levels in sera of patients with cancer. Cancer Res. 1989 Sep 15;49(18):5225–5229. [PubMed] [Google Scholar]
  39. Vistisen K., Priemé H., Okkels H., Vallentin S., Loft S., Olsen J. H., Poulsen H. E. Genotype and phenotype of glutathione S-transferase mu in testicular cancer patients. Pharmacogenetics. 1997 Feb;7(1):21–25. doi: 10.1097/00008571-199702000-00003. [DOI] [PubMed] [Google Scholar]
  40. Wagner J. R., Hu C. C., Ames B. N. Endogenous oxidative damage of deoxycytidine in DNA. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3380–3384. doi: 10.1073/pnas.89.8.3380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Wasowicz W., Gromadzińska J., Skłodowska M., Popadiuk S. Selenium concentration and glutathione peroxidase activity in blood of children with cancer. J Trace Elem Electrolytes Health Dis. 1994 Mar;8(1):53–57. [PubMed] [Google Scholar]
  42. el-Sharabasy M. M., el-Dosoky I., Horria H., Khalaf A. H. Elevation of glutathione, glutathione-reductase and nucleic acids in both normal tissues and tumour of breast cancer patients. Cancer Lett. 1993 Aug 16;72(1-2):11–15. doi: 10.1016/0304-3835(93)90004-s. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES