Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Apr;80(1-2):25–31. doi: 10.1038/sj.bjc.6690316

Generation of reactive oxygen species by human mesothelioma cells

K Kahlos 1, S Pitkänen 3, I Hassinen 2, K Linnainmaa 4, V L Kinnula 1
PMCID: PMC2363004  PMID: 10389973

Abstract

Malignant mesothelioma cells contain elevated levels of manganese superoxide dismutase (MnSOD) and are highly resistant to oxidants compared to non-malignant mesothelial cells. Since the level of cellular free radicals may be important for cell survival, we hypothesized that the increase of MnSOD in the mitochondria of mesothelioma cells may alter the free radical levels of these organelles. First, MnSOD activity was compared to the activities of two constitutive mitochondrial enzymes; MnSOD activity was 20 times higher in the mesothelioma cells than in the mesothelial cells, whereas the activities of citrate synthase and cytochrome c oxidase did not differ significantly in the two cell lines. This indicates that the activity of MnSOD per mitochondrion was increased in the mesothelioma cells. Superoxide production was assayed in the isolated mitochondria of these cells using lucigenin chemiluminescence. Mitochondrial superoxide levels were significantly lower (72%) in the mesothelioma cells compared to the mesothelial cells. Oxidant production in intact cells, assayed by fluorimetry using 2′,7′-dichlorodihydrofluorescein as a fluorescent probe, did not differ significantly between these cells. We conclude that mitochondrial superoxide levels are lower in mesothelioma cells compared to nonmalignant mesothelial cells, and that this difference may be explained by higher MnSOD activity in the mitochondria of these cells. Oxidant production was not different in these cells, which may be due to the previously observed increase in H2O2-scavenging mechanisms of mesothelioma cells. © 1999 Cancer Research Campaign

Keywords: mesothelioma, reactive oxygen species, oxidant, antioxidant, superoxide dismutase, mitochondria

Full Text

The Full Text of this article is available as a PDF (110.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andreoli S. P., Mallett C., McAteer J. A., Williams L. V. Antioxidant defense mechanisms of endothelial cells and renal tubular epithelial cells in vitro: role of the glutathione redox cycle and catalase. Pediatr Res. 1992 Sep;32(3):360–365. doi: 10.1203/00006450-199209000-00023. [DOI] [PubMed] [Google Scholar]
  2. Bass D. A., Parce J. W., Dechatelet L. R., Szejda P., Seeds M. C., Thomas M. Flow cytometric studies of oxidative product formation by neutrophils: a graded response to membrane stimulation. J Immunol. 1983 Apr;130(4):1910–1917. [PubMed] [Google Scholar]
  3. Bize I. B., Oberley L. W., Morris H. P. Superoxide dismutase and superoxide radical in Morris hepatomas. Cancer Res. 1980 Oct;40(10):3686–3693. [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Buckley B. J., Kent R. S., Whorton A. R. Regulation of endothelial cell prostaglandin synthesis by glutathione. J Biol Chem. 1991 Sep 5;266(25):16659–16666. [PubMed] [Google Scholar]
  6. Burdon R. H. Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radic Biol Med. 1995 Apr;18(4):775–794. doi: 10.1016/0891-5849(94)00198-s. [DOI] [PubMed] [Google Scholar]
  7. Cathcart R., Schwiers E., Ames B. N. Detection of picomole levels of hydroperoxides using a fluorescent dichlorofluorescein assay. Anal Biochem. 1983 Oct 1;134(1):111–116. doi: 10.1016/0003-2697(83)90270-1. [DOI] [PubMed] [Google Scholar]
  8. Cobbs C. S., Levi D. S., Aldape K., Israel M. A. Manganese superoxide dismutase expression in human central nervous system tumors. Cancer Res. 1996 Jul 15;56(14):3192–3195. [PubMed] [Google Scholar]
  9. Crapo J. D., McCord J. M., Fridovich I. Preparation and assay of superoxide dismutases. Methods Enzymol. 1978;53:382–393. doi: 10.1016/s0076-6879(78)53044-9. [DOI] [PubMed] [Google Scholar]
  10. Freeman B. A., Mason R. J., Williams M. C., Crapo J. D. Antioxidant enzyme activity in alveolar type II cells after exposure of rats to hyperoxia. Exp Lung Res. 1986;10(2):203–222. doi: 10.3109/01902148609061493. [DOI] [PubMed] [Google Scholar]
  11. Fridovich I. Superoxide dismutases. Annu Rev Biochem. 1975;44:147–159. doi: 10.1146/annurev.bi.44.070175.001051. [DOI] [PubMed] [Google Scholar]
  12. Hirose K., Longo D. L., Oppenheim J. J., Matsushima K. Overexpression of mitochondrial manganese superoxide dismutase promotes the survival of tumor cells exposed to interleukin-1, tumor necrosis factor, selected anticancer drugs, and ionizing radiation. FASEB J. 1993 Feb 1;7(2):361–368. doi: 10.1096/fasebj.7.2.8440412. [DOI] [PubMed] [Google Scholar]
  13. Janssen Y. M., Marsh J. P., Absher M. P., Hemenway D., Vacek P. M., Leslie K. O., Borm P. J., Mossman B. T. Expression of antioxidant enzymes in rat lungs after inhalation of asbestos or silica. J Biol Chem. 1992 May 25;267(15):10625–10630. [PubMed] [Google Scholar]
  14. Kahlos K., Anttila S., Asikainen T., Kinnula K., Raivio K. O., Mattson K., Linnainmaa K., Kinnula V. L. Manganese superoxide dismutase in healthy human pleural mesothelium and in malignant pleural mesothelioma. Am J Respir Cell Mol Biol. 1998 Apr;18(4):570–580. doi: 10.1165/ajrcmb.18.4.2943. [DOI] [PubMed] [Google Scholar]
  15. Kamp D. W., Graceffa P., Pryor W. A., Weitzman S. A. The role of free radicals in asbestos-induced diseases. Free Radic Biol Med. 1992;12(4):293–315. doi: 10.1016/0891-5849(92)90117-y. [DOI] [PubMed] [Google Scholar]
  16. Ke Y., Reddel R. R., Gerwin B. I., Reddel H. K., Somers A. N., McMenamin M. G., LaVeck M. A., Stahel R. A., Lechner J. F., Harris C. C. Establishment of a human in vitro mesothelial cell model system for investigating mechanisms of asbestos-induced mesothelioma. Am J Pathol. 1989 May;134(5):979–991. [PMC free article] [PubMed] [Google Scholar]
  17. Keller J. N., Kindy M. S., Holtsberg F. W., St Clair D. K., Yen H. C., Germeyer A., Steiner S. M., Bruce-Keller A. J., Hutchins J. B., Mattson M. P. Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J Neurosci. 1998 Jan 15;18(2):687–697. doi: 10.1523/JNEUROSCI.18-02-00687.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kinnula K., Linnainmaa K., Raivio K. O., Kinnula V. L. Endogenous antioxidant enzymes and glutathione S-transferase in protection of mesothelioma cells against hydrogen peroxide and epirubicin toxicity. Br J Cancer. 1998 Apr;77(7):1097–1102. doi: 10.1038/bjc.1998.182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kinnula V. L., Chang L., Everitt J. I., Crapo J. D. Oxidants and antioxidants in alveolar epithelial type II cells: in situ, freshly isolated, and cultured cells. Am J Physiol. 1992 Jan;262(1 Pt 1):L69–L77. doi: 10.1152/ajplung.1992.262.1.L69. [DOI] [PubMed] [Google Scholar]
  20. Kinnula V. L., Everitt J. I., Mangum J. B., Chang L. Y., Crapo J. D. Antioxidant defense mechanisms in cultured pleural mesothelial cells. Am J Respir Cell Mol Biol. 1992 Jul;7(1):95–103. doi: 10.1165/ajrcmb/7.1.95. [DOI] [PubMed] [Google Scholar]
  21. Kinnula V. L., Pietarinen-Runtti P., Raivio K., Kahlos K., Pelin K., Mattson K., Linnainmaa K. Manganese superoxide dismutase in human pleural mesothelioma cell lines. Free Radic Biol Med. 1996;21(4):527–532. doi: 10.1016/0891-5849(96)00049-4. [DOI] [PubMed] [Google Scholar]
  22. Kinnula V. L., Whorton A. R., Chang L. Y., Crapo J. D. Regulation of hydrogen peroxide generation in cultured endothelial cells. Am J Respir Cell Mol Biol. 1992 Feb;6(2):175–182. doi: 10.1165/ajrcmb/6.2.175. [DOI] [PubMed] [Google Scholar]
  23. Kroemer G. The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nat Med. 1997 Jun;3(6):614–620. doi: 10.1038/nm0697-614. [DOI] [PubMed] [Google Scholar]
  24. Kroemer G., Zamzami N., Susin S. A. Mitochondrial control of apoptosis. Immunol Today. 1997 Jan;18(1):44–51. doi: 10.1016/s0167-5699(97)80014-x. [DOI] [PubMed] [Google Scholar]
  25. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  26. Liochev S. I., Fridovich I. Lucigenin (bis-N-methylacridinium) as a mediator of superoxide anion production. Arch Biochem Biophys. 1997 Jan 1;337(1):115–120. doi: 10.1006/abbi.1997.9766. [DOI] [PubMed] [Google Scholar]
  27. MARGOLIASH E., NOVOGRODSKY A., SCHEJTER A. Irreversible reaction of 3-amino-1:2:4-triazole and related inhibitors with the protein of catalase. Biochem J. 1960 Feb;74:339–348. doi: 10.1042/bj0740339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Manna S. K., Zhang H. J., Yan T., Oberley L. W., Aggarwal B. B. Overexpression of manganese superoxide dismutase suppresses tumor necrosis factor-induced apoptosis and activation of nuclear transcription factor-kappaB and activated protein-1. J Biol Chem. 1998 May 22;273(21):13245–13254. doi: 10.1074/jbc.273.21.13245. [DOI] [PubMed] [Google Scholar]
  29. Mossman B. T., Kamp D. W., Weitzman S. A. Mechanisms of carcinogenesis and clinical features of asbestos-associated cancers. Cancer Invest. 1996;14(5):466–480. doi: 10.3109/07357909609018904. [DOI] [PubMed] [Google Scholar]
  30. Nakano T., Oka K., Taniguchi N. Manganese superoxide dismutase expression correlates with p53 status and local recurrence of cervical carcinoma treated with radiation therapy. Cancer Res. 1996 Jun 15;56(12):2771–2775. [PubMed] [Google Scholar]
  31. Nishida S., Akai F., Iwasaki H., Hosokawa K., Kusunoki T., Suzuki K., Taniguchi N., Hashimoto S., Tamura T. T. Manganese superoxide dismutase content and localization in human thyroid tumours. J Pathol. 1993 Mar;169(3):341–345. doi: 10.1002/path.1711690311. [DOI] [PubMed] [Google Scholar]
  32. Oberley L. W., Buettner G. R. Role of superoxide dismutase in cancer: a review. Cancer Res. 1979 Apr;39(4):1141–1149. [PubMed] [Google Scholar]
  33. Oberley L. W., St Clair D. K., Autor A. P., Oberley T. D. Increase in manganese superoxide dismutase activity in the mouse heart after X-irradiation. Arch Biochem Biophys. 1987 Apr;254(1):69–80. doi: 10.1016/0003-9861(87)90082-8. [DOI] [PubMed] [Google Scholar]
  34. Oberley T. D., Sempf J. M., Oberley M. J., McCormick M. L., Muse K. E., Oberley L. W. Immunogold analysis of antioxidant enzymes in human renal cell carcinoma. Virchows Arch. 1994;424(2):155–164. doi: 10.1007/BF00193495. [DOI] [PubMed] [Google Scholar]
  35. Pelin-Enlund K., Husgafvel-Pursiainen K., Tammilehto L., Klockars M., Jantunen K., Gerwin B. I., Harris C. C., Tuomi T., Vanhala E., Mattson K. Asbestos-related malignant mesothelioma: growth, cytology, tumorigenicity and consistent chromosome findings in cell lines from five patients. Carcinogenesis. 1990 Apr;11(4):673–681. doi: 10.1093/carcin/11.4.673. [DOI] [PubMed] [Google Scholar]
  36. Pietarinen P., Raivio K., Devlin R. B., Crapo J. D., Chang L. Y., Kinnula V. L. Catalase and glutathione reductase protection of human alveolar macrophages during oxidant exposure in vitro. Am J Respir Cell Mol Biol. 1995 Oct;13(4):434–441. doi: 10.1165/ajrcmb.13.4.7546773. [DOI] [PubMed] [Google Scholar]
  37. Pitkanen S., Robinson B. H. Mitochondrial complex I deficiency leads to increased production of superoxide radicals and induction of superoxide dismutase. J Clin Invest. 1996 Jul 15;98(2):345–351. doi: 10.1172/JCI118798. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Pitkänen S., Raha S., Robinson B. H. Diagnosis of complex I deficiency in patients with lactic acidemia using skin fibroblast cultures. Biochem Mol Med. 1996 Dec;59(2):134–137. doi: 10.1006/bmme.1996.0078. [DOI] [PubMed] [Google Scholar]
  39. Powis G. Free radical formation by antitumor quinones. Free Radic Biol Med. 1989;6(1):63–101. doi: 10.1016/0891-5849(89)90162-7. [DOI] [PubMed] [Google Scholar]
  40. Radi R., Turrens J. F., Chang L. Y., Bush K. M., Crapo J. D., Freeman B. A. Detection of catalase in rat heart mitochondria. J Biol Chem. 1991 Nov 15;266(32):22028–22034. [PubMed] [Google Scholar]
  41. Rosenkranz A. R., Schmaldienst S., Stuhlmeier K. M., Chen W., Knapp W., Zlabinger G. J. A microplate assay for the detection of oxidative products using 2',7'-dichlorofluorescin-diacetate. J Immunol Methods. 1992 Nov 25;156(1):39–45. doi: 10.1016/0022-1759(92)90008-h. [DOI] [PubMed] [Google Scholar]
  42. Royall J. A., Ischiropoulos H. Evaluation of 2',7'-dichlorofluorescin and dihydrorhodamine 123 as fluorescent probes for intracellular H2O2 in cultured endothelial cells. Arch Biochem Biophys. 1993 May;302(2):348–355. doi: 10.1006/abbi.1993.1222. [DOI] [PubMed] [Google Scholar]
  43. Schraufstätter I. U., Hinshaw D. B., Hyslop P. A., Spragg R. G., Cochrane C. G. Glutathione cycle activity and pyridine nucleotide levels in oxidant-induced injury of cells. J Clin Invest. 1985 Sep;76(3):1131–1139. doi: 10.1172/JCI112068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Shimoda-Matsubayashi S., Matsumine H., Kobayashi T., Nakagawa-Hattori Y., Shimizu Y., Mizuno Y. Structural dimorphism in the mitochondrial targeting sequence in the human manganese superoxide dismutase gene. A predictive evidence for conformational change to influence mitochondrial transport and a study of allelic association in Parkinson's disease. Biochem Biophys Res Commun. 1996 Sep 13;226(2):561–565. doi: 10.1006/bbrc.1996.1394. [DOI] [PubMed] [Google Scholar]
  45. Sinha B. K., Mimnaugh E. G. Free radicals and anticancer drug resistance: oxygen free radicals in the mechanisms of drug cytotoxicity and resistance by certain tumors. Free Radic Biol Med. 1990;8(6):567–581. doi: 10.1016/0891-5849(90)90155-c. [DOI] [PubMed] [Google Scholar]
  46. Slater A. F., Nobel C. S., Orrenius S. The role of intracellular oxidants in apoptosis. Biochim Biophys Acta. 1995 May 24;1271(1):59–62. doi: 10.1016/0925-4439(95)00010-2. [DOI] [PubMed] [Google Scholar]
  47. Sun Y. Free radicals, antioxidant enzymes, and carcinogenesis. Free Radic Biol Med. 1990;8(6):583–599. doi: 10.1016/0891-5849(90)90156-d. [DOI] [PubMed] [Google Scholar]
  48. Szatrowski T. P., Nathan C. F. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 1991 Feb 1;51(3):794–798. [PubMed] [Google Scholar]
  49. Tew K. D. Glutathione-associated enzymes in anticancer drug resistance. Cancer Res. 1994 Aug 15;54(16):4313–4320. [PubMed] [Google Scholar]
  50. Troy C. M., Shelanski M. L. Down-regulation of copper/zinc superoxide dismutase causes apoptotic death in PC12 neuronal cells. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6384–6387. doi: 10.1073/pnas.91.14.6384. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Vincent R., Chang L. Y., Slot J. W., Crapo J. D. Quantitative immunocytochemical analysis of Mn SOD in alveolar type II cells of the hyperoxic rat. Am J Physiol. 1994 Oct;267(4 Pt 1):L475–L481. doi: 10.1152/ajplung.1994.267.4.L475. [DOI] [PubMed] [Google Scholar]
  52. Vuorinen K., Ylitalo K., Peuhkurinen K., Raatikainen P., Ala-Rämi A., Hassinen I. E. Mechanisms of ischemic preconditioning in rat myocardium. Roles of adenosine, cellular energy state, and mitochondrial F1F0-ATPase. Circulation. 1995 Jun 1;91(11):2810–2818. doi: 10.1161/01.cir.91.11.2810. [DOI] [PubMed] [Google Scholar]
  53. Warner B. B., Stuart L., Gebb S., Wispé J. R. Redox regulation of manganese superoxide dismutase. Am J Physiol. 1996 Jul;271(1 Pt 1):L150–L158. doi: 10.1152/ajplung.1996.271.1.L150. [DOI] [PubMed] [Google Scholar]
  54. Wong G. H., Goeddel D. V. Induction of manganous superoxide dismutase by tumor necrosis factor: possible protective mechanism. Science. 1988 Nov 11;242(4880):941–944. doi: 10.1126/science.3263703. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES