Abstract
Exogenous administration of 5-aminolaevulinic acid (ALA) is becoming widely used to enhance the endogenous synthesis of protoporphyrin IX (PpIX) in photodynamic therapy (PDT) and fluorescence photodetection (PD). Recently, results have shown that the chemical modification of ALA into its more lipophilic esters circumvents limitations of ALA-induced PpIX like shallow penetration depth into deep tissue layers and inhomogeneous biodistribution and enhances the total PpIX formation. The present clinical pilot study assesses the feasibility and the advantages of a topical ALA ester-based fluorescence photodetection in the human bladder. In this preliminary study 5-aminolaevulinic acid hexylester (h-ALA) solutions, containing concentrations ranging from 4 to 16 mM, were applied intravesically to 25 patients. Effects of time and drug dose on the resulting PpIX fluorescence level were determined in vivo with an optical fibre-based spectrofluorometer. Neither local nor systemic side-effects were observed for the applied conditions. All conditions used yielded a preferential PpIX accumulation in the neoplastic tissue. Our clinical investigations indicate that with h-ALA a twofold increase of PpIX fluorescence intensity can be observed using 20-fold lower concentrations as compared to ALA. © 1999 Cancer Research Campaign
Keywords: 5-aminolaevulinic acid, 5-aminolaevulinic acid hexylester, photodynamic therapy, fluorescence, protoporphyrin IX, human bladder cancer
Full Text
The Full Text of this article is available as a PDF (313.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berg K., Anholt H., Bech O., Moan J. The influence of iron chelators on the accumulation of protoporphyrin IX in 5-aminolaevulinic acid-treated cells. Br J Cancer. 1996 Sep;74(5):688–697. doi: 10.1038/bjc.1996.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bezdetnaya L., Zeghari N., Belitchenko I., Barberi-Heyob M., Merlin J. L., Potapenko A., Guillemin F. Spectroscopic and biological testing of photobleaching of porphyrins in solutions. Photochem Photobiol. 1996 Aug;64(2):382–386. doi: 10.1111/j.1751-1097.1996.tb02475.x. [DOI] [PubMed] [Google Scholar]
- Bridges J. W., Sargent N. S., Upshall D. G. Rapid absorption from the urinary bladder of a series of n-alkyl carbamates: a route for the recirculation of drugs. Br J Pharmacol. 1979 Jun;66(2):283–289. doi: 10.1111/j.1476-5381.1979.tb13677.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chang S. C., MacRobert A. J., Bown S. G. Biodistribution of protoporphyrin IX in rat urinary bladder after intravesical instillation of 5-aminolevulinic acid. J Urol. 1996 May;155(5):1744–1748. [PubMed] [Google Scholar]
- Chang S. C., MacRobert A. J., Porter J. B., Bown S. G. The efficacy of an iron chelator (CP94) in increasing cellular protoporphyrin IX following intravesical 5-aminolaevulinic acid administration: an in vivo study. J Photochem Photobiol B. 1997 Apr;38(2-3):114–122. doi: 10.1016/s1011-1344(96)07441-6. [DOI] [PubMed] [Google Scholar]
- Dougherty T. J., Cooper M. T., Mang T. S. Cutaneous phototoxic occurrences in patients receiving Photofrin. Lasers Surg Med. 1990;10(5):485–488. doi: 10.1002/lsm.1900100514. [DOI] [PubMed] [Google Scholar]
- Fraga C. G., Onuki J., Lucesoli F., Bechara E. J., Di Mascio P. 5-Aminolevulinic acid mediates the in vivo and in vitro formation of 8-hydroxy-2'-deoxyguanosine in DNA. Carcinogenesis. 1994 Oct;15(10):2241–2244. doi: 10.1093/carcin/15.10.2241. [DOI] [PubMed] [Google Scholar]
- Fukuda H., Paredes S., Batlle A. M. Tumour-localizing properties of porphyrins. In vivo studies using free and liposome encapsulated aminolevulinic acid. Comp Biochem Physiol B. 1992 Jun;102(2):433–436. doi: 10.1016/0305-0491(92)90147-j. [DOI] [PubMed] [Google Scholar]
- Gaullier J. M., Berg K., Peng Q., Anholt H., Selbo P. K., Ma L. W., Moan J. Use of 5-aminolevulinic acid esters to improve photodynamic therapy on cells in culture. Cancer Res. 1997 Apr 15;57(8):1481–1486. [PubMed] [Google Scholar]
- Hanania J., Malik Z. The effect of EDTA and serum on endogenous porphyrin accumulation and photodynamic sensitization of human K562 leukemic cells. Cancer Lett. 1992 Aug 14;65(2):127–131. doi: 10.1016/0304-3835(92)90156-p. [DOI] [PubMed] [Google Scholar]
- Hermes-Lima M. How do Ca2+ and 5-aminolevulinic acid-derived oxyradicals promote injury to isolated mitochondria? Free Radic Biol Med. 1995 Sep;19(3):381–390. doi: 10.1016/0891-5849(95)00015-p. [DOI] [PubMed] [Google Scholar]
- Iinuma S., Bachor R., Flotte T., Hasan T. Biodistribution and phototoxicity of 5-aminolevulinic acid-induced PpIX in an orthotopic rat bladder tumor model. J Urol. 1995 Mar;153(3 Pt 1):802–806. [PubMed] [Google Scholar]
- Jain R. K. Transport of molecules across tumor vasculature. Cancer Metastasis Rev. 1987;6(4):559–593. doi: 10.1007/BF00047468. [DOI] [PubMed] [Google Scholar]
- Jain R. K. Transport of molecules in the tumor interstitium: a review. Cancer Res. 1987 Jun 15;47(12):3039–3051. [PubMed] [Google Scholar]
- Jichlinski P., Forrer M., Mizeret J., Glanzmann T., Braichotte D., Wagnières G., Zimmer G., Guillou L., Schmidlin F., Graber P. Clinical evaluation of a method for detecting superficial surgical transitional cell carcinoma of the bladder by light-induced fluorescence of protoporphyrin IX following the topical application of 5-aminolevulinic acid: preliminary results. Lasers Surg Med. 1997;20(4):402–408. doi: 10.1002/(sici)1096-9101(1997)20:4<402::aid-lsm5>3.0.co;2-u. [DOI] [PubMed] [Google Scholar]
- Kennedy J. C., Pottier R. H., Pross D. C. Photodynamic therapy with endogenous protoporphyrin IX: basic principles and present clinical experience. J Photochem Photobiol B. 1990 Jun;6(1-2):143–148. doi: 10.1016/1011-1344(90)85083-9. [DOI] [PubMed] [Google Scholar]
- Kloek J., Beijersbergen van Henegouwen Prodrugs of 5-aminolevulinic acid for photodynamic therapy. Photochem Photobiol. 1996 Dec;64(6):994–1000. doi: 10.1111/j.1751-1097.1996.tb01868.x. [DOI] [PubMed] [Google Scholar]
- Kriegmair M., Baumgartner R., Knuechel R., Steinbach P., Ehsan A., Lumper W., Hofstädter F., Hofstetter A. Fluorescence photodetection of neoplastic urothelial lesions following intravesical instillation of 5-aminolevulinic acid. Urology. 1994 Dec;44(6):836–841. doi: 10.1016/s0090-4295(94)80167-3. [DOI] [PubMed] [Google Scholar]
- Kriegmair M., Baumgartner R., Lumper W., Waidelich R., Hofstetter A. Early clinical experience with 5-aminolevulinic acid for the photodynamic therapy of superficial bladder cancer. Br J Urol. 1996 May;77(5):667–671. doi: 10.1046/j.1464-410x.1996.09717.x. [DOI] [PubMed] [Google Scholar]
- Leveckis J., Burn J. L., Brown N. J., Reed M. W. Kinetics of endogenous protoporphyrin IX induction by aminolevulinic acid: preliminary studies in the bladder. J Urol. 1994 Aug;152(2 Pt 1):550–553. doi: 10.1016/s0022-5347(17)32791-x. [DOI] [PubMed] [Google Scholar]
- Levi F., La Vecchia C., Randimbison L., Franceschi S. Incidence of infiltrating cancer following superficial bladder carcinoma. Int J Cancer. 1993 Sep 30;55(3):419–421. doi: 10.1002/ijc.2910550316. [DOI] [PubMed] [Google Scholar]
- Loh C. S., Vernon D., MacRobert A. J., Bedwell J., Bown S. G., Brown S. B. Endogenous porphyrin distribution induced by 5-aminolaevulinic acid in the tissue layers of the gastrointestinal tract. J Photochem Photobiol B. 1993 Sep;20(1):47–54. doi: 10.1016/1011-1344(93)80130-2. [DOI] [PubMed] [Google Scholar]
- Moan J., Streckyte G., Bagdonas S., Bech O., Berg K. Photobleaching of protoporphyrin IX in cells incubated with 5-aminolevulinic acid. Int J Cancer. 1997 Jan 6;70(1):90–97. doi: 10.1002/(sici)1097-0215(19970106)70:1<90::aid-ijc14>3.0.co;2-h. [DOI] [PubMed] [Google Scholar]
- Nagy G. K., Frable W. J., Murphy W. M. Classification of premalignant urothelial abnormalities. A Delphi study of the National Bladder Cancer Collaborative Group A. Pathol Annu. 1982;17(Pt 1):219–233. [PubMed] [Google Scholar]
- Novo M., Hüttmann G., Diddens H. Chemical instability of 5-aminolevulinic acid used in the fluorescence diagnosis of bladder tumours. J Photochem Photobiol B. 1996 Jul;34(2-3):143–148. doi: 10.1016/1011-1344(96)07285-5. [DOI] [PubMed] [Google Scholar]
- Ortel B., Tanew A., Hönigsmann H. Lethal photosensitization by endogenous porphyrins of PAM cells--modification by desferrioxamine. J Photochem Photobiol B. 1993 Mar;17(3):273–278. doi: 10.1016/1011-1344(93)80025-5. [DOI] [PubMed] [Google Scholar]
- Peng Q., Moan J., Warloe T., Iani V., Steen H. B., Bjørseth A., Nesland J. M. Build-up of esterified aminolevulinic-acid-derivative-induced porphyrin fluorescence in normal mouse skin. J Photochem Photobiol B. 1996 Jun;34(1):95–96. doi: 10.1016/1011-1344(95)07268-3. [DOI] [PubMed] [Google Scholar]
- Peng Q., Moan J., Warloe T., Nesland J. M., Rimington C. Distribution and photosensitizing efficiency of porphyrins induced by application of exogenous 5-aminolevulinic acid in mice bearing mammary carcinoma. Int J Cancer. 1992 Sep 30;52(3):433–443. doi: 10.1002/ijc.2910520318. [DOI] [PubMed] [Google Scholar]
- Peng Q., Warloe T., Moan J., Heyerdahl H., Steen H. B., Nesland J. M., Giercksky K. E. Distribution of 5-aminolevulinic acid-induced porphyrins in noduloulcerative basal cell carcinoma. Photochem Photobiol. 1995 Nov;62(5):906–913. doi: 10.1111/j.1751-1097.1995.tb09154.x. [DOI] [PubMed] [Google Scholar]
- Rebeiz N., Arkins S., Rebeiz C. A., Simon J., Zachary J. F., Kelley K. W. Induction of tumor necrosis by delta-aminolevulinic acid and 1,10-phenanthroline photodynamic therapy. Cancer Res. 1996 Jan 15;56(2):339–344. [PubMed] [Google Scholar]
- Rick K., Sroka R., Stepp H., Kriegmair M., Huber R. M., Jacob K., Baumgartner R. Pharmacokinetics of 5-aminolevulinic acid-induced protoporphyrin IX in skin and blood. J Photochem Photobiol B. 1997 Oct;40(3):313–319. doi: 10.1016/s1011-1344(97)00076-6. [DOI] [PubMed] [Google Scholar]
- Rotomskis R., Bagdonas S., Streckyte G. Spectroscopic studies of photobleaching and photoproduct formation of porphyrins used in tumour therapy. J Photochem Photobiol B. 1996 Mar;33(1):61–67. doi: 10.1016/1011-1344(95)07228-4. [DOI] [PubMed] [Google Scholar]
- Schoenfeld N., Mamet R., Nordenberg Y., Shafran M., Babushkin T., Malik Z. Protoporphyrin biosynthesis in melanoma B16 cells stimulated by 5-aminolevulinic acid and chemical inducers: characterization of photodynamic inactivation. Int J Cancer. 1994 Jan 2;56(1):106–112. doi: 10.1002/ijc.2910560119. [DOI] [PubMed] [Google Scholar]
- Steinbach P., Kriegmair M., Baumgartner R., Hofstädter F., Knüchel R. Intravesical instillation of 5-aminolevulinic acid: the fluorescent metabolite is limited to urothelial cells. Urology. 1994 Nov;44(5):676–681. doi: 10.1016/s0090-4295(94)80203-3. [DOI] [PubMed] [Google Scholar]
- Svanberg K., Andersson T., Killander D., Wang I., Stenram U., Andersson-Engels S., Berg R., Johansson J., Svanberg S. Photodynamic therapy of non-melanoma malignant tumours of the skin using topical delta-amino levulinic acid sensitization and laser irradiation. Br J Dermatol. 1994 Jun;130(6):743–751. doi: 10.1111/j.1365-2133.1994.tb03412.x. [DOI] [PubMed] [Google Scholar]
- Wagnieres G., Hadjur C., Grosjean P., Braichotte D., Savary J. F., Monnier P., van den Bergh H. Clinical evaluation of the cutaneous phototoxicity of 5,10,15,20-tetra(m-hydroxyphenyl)chlorin. Photochem Photobiol. 1998 Sep;68(3):382–387. [PubMed] [Google Scholar]
