Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Apr;80(1-2):117–126. doi: 10.1038/sj.bjc.6690330

The effects of hyperoxic and hypercarbic gases on tumour blood flow

T J Dunn 1, R D Braun 1, W E Rhemus 1, G L Rosner 2, T W Secomb 3, G M Tozer 4, D J Chaplin 4, M W Dewhirst 1
PMCID: PMC2363007  PMID: 10389987

Abstract

Carbogen (95% O2 and 5% CO2) has been used in preference to 100% oxygen (O2) as a radiosensitizer, because it is believed that CO2 blocks O2-induced vasoconstriction. However, recent work suggests that both normal and tumour arterioles of dorsal flap window chambers exhibit the opposite: no vasoconstriction vs constriction for O2 vs carbogen breathing respectively. We hypothesized that CO2 content might cause vasoconstriction and investigated the effects of three O2–CO2 breathing mixtures on tumour arteriolar diameter (TAD) and blood flow (TBF). Fischer 344 rats with R3230Ac tumours transplanted into window chambers breathed either 1%, 5%, or 10% CO2 + O2. Intravital microscopy and laser Doppler flowmetry were used to measure TAD and TBF respectively. Animals breathing 1% CO2 had increased mean arterial pressure (MAP), no change in heart rate (HR), transient reduction in TAD and no change in TBF. Rats breathing 5% CO2 (carbogen) had transiently increased MAP, decreased HR, reduced TAD and a sustained 25% TBF decrease. Animals exposed to 10% CO2 experienced a transient decrease in MAP, no HR change, reduced TAD and a 30–40% transient TBF decrease. The effects on MAP, HR, TAD and TBF were not CO2 dose-dependent, suggesting that complex physiologic mechanisms are involved. Nevertheless, when ≥ 5% CO2 was breathed, there was clear vasoconstriction and TBF reduction in this model. This suggests that the effects of hypercarbic gases on TBF are site-dependent and that use of carbogen as a radiosensitizer may be counterproductive in certain situations. © 1999 Cancer Research Campaign

Keywords: tumour, blood flow, arteriolar diameter, carbogen, carbon dioxide

Full Text

The Full Text of this article is available as a PDF (189.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brizel D. M., Hage W. D., Dodge R. K., Munley M. T., Piantadosi C. A., Dewhirst M. W. Hyperbaric oxygen improves tumor radiation response significantly more than carbogen/nicotinamide. Radiat Res. 1997 Jun;147(6):715–720. [PubMed] [Google Scholar]
  2. Brizel D. M., Lin S., Johnson J. L., Brooks J., Dewhirst M. W., Piantadosi C. A. The mechanisms by which hyperbaric oxygen and carbogen improve tumour oxygenation. Br J Cancer. 1995 Nov;72(5):1120–1124. doi: 10.1038/bjc.1995.474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brizel D. M., Scully S. P., Harrelson J. M., Layfield L. J., Bean J. M., Prosnitz L. R., Dewhirst M. W. Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res. 1996 Mar 1;56(5):941–943. [PubMed] [Google Scholar]
  4. Carr P., Graves J. E., Poston L. Carbon dioxide induced vasorelaxation in rat mesenteric small arteries precontracted with noradrenaline is endothelium dependent and mediated by nitric oxide. Pflugers Arch. 1993 May;423(3-4):343–345. doi: 10.1007/BF00374415. [DOI] [PubMed] [Google Scholar]
  5. Chapman J. D., Stobbe C. C., Arnfield M. R., Santus R., Lee J., McPhee M. S. Oxygen dependency of tumor cell killing in vitro by light-activated Photofrin II. Radiat Res. 1991 Apr;126(1):73–79. [PubMed] [Google Scholar]
  6. Dewhirst M. W., Ong E. T., Rosner G. L., Rehmus S. W., Shan S., Braun R. D., Brizel D. M., Secomb T. W. Arteriolar oxygenation in tumour and subcutaneous arterioles: effects of inspired air oxygen content. Br J Cancer Suppl. 1996 Jul;27:S241–S246. [PMC free article] [PubMed] [Google Scholar]
  7. Dewhirst M. W., Tso C. Y., Oliver R., Gustafson C. S., Secomb T. W., Gross J. F. Morphologic and hemodynamic comparison of tumor and healing normal tissue microvasculature. Int J Radiat Oncol Biol Phys. 1989 Jul;17(1):91–99. doi: 10.1016/0360-3016(89)90375-1. [DOI] [PubMed] [Google Scholar]
  8. Falk S. J., Ward R., Bleehen N. M. The influence of carbogen breathing on tumour tissue oxygenation in man evaluated by computerised p02 histography. Br J Cancer. 1992 Nov;66(5):919–924. doi: 10.1038/bjc.1992.386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Grau C., Horsman M. R., Overgaard J. Improving the radiation response in a C3H mouse mammary carcinoma by normobaric oxygen or carbogen breathing. Int J Radiat Oncol Biol Phys. 1992;22(3):415–419. doi: 10.1016/0360-3016(92)90844-8. [DOI] [PubMed] [Google Scholar]
  10. Hampson N. B., Jöbsis-VanderVliet F. F., Piantadosi C. A. Skeletal muscle oxygen availability during respiratory acid-base disturbances in cats. Respir Physiol. 1987 Nov;70(2):143–158. doi: 10.1016/0034-5687(87)90046-6. [DOI] [PubMed] [Google Scholar]
  11. Helmlinger G., Yuan F., Dellian M., Jain R. K. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med. 1997 Feb;3(2):177–182. doi: 10.1038/nm0297-177. [DOI] [PubMed] [Google Scholar]
  12. Hill S. A., Collingridge D. R., Vojnovic B., Chaplin D. J. Tumour radiosensitization by high-oxygen-content gases: influence of the carbon dioxide content of the inspired gas on PO2, microcirculatory function and radiosensitivity. Int J Radiat Oncol Biol Phys. 1998 Mar 1;40(4):943–951. doi: 10.1016/s0360-3016(97)00892-4. [DOI] [PubMed] [Google Scholar]
  13. Hockel M., Schlenger K., Aral B., Mitze M., Schaffer U., Vaupel P. Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res. 1996 Oct 1;56(19):4509–4515. [PubMed] [Google Scholar]
  14. Honess D. J., Bleehen N. M. Perfusion changes in the RIF-1 tumour and normal tissues after carbogen and nicotinamide, individually and combined. Br J Cancer. 1995 Jun;71(6):1175–1180. doi: 10.1038/bjc.1995.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Horsman M. R., Grau C., Overgaard J. Reoxygenation in a C3H mouse mammary carcinoma. The importance of chronic rather than acute hypoxia. Acta Oncol. 1995;34(3):325–328. doi: 10.3109/02841869509093983. [DOI] [PubMed] [Google Scholar]
  16. Höckel M., Knoop C., Schlenger K., Vorndran B., Baussmann E., Mitze M., Knapstein P. G., Vaupel P. Intratumoral pO2 predicts survival in advanced cancer of the uterine cervix. Radiother Oncol. 1993 Jan;26(1):45–50. doi: 10.1016/0167-8140(93)90025-4. [DOI] [PubMed] [Google Scholar]
  17. Iadecola C. Does nitric oxide mediate the increases in cerebral blood flow elicited by hypercapnia? Proc Natl Acad Sci U S A. 1992 May 1;89(9):3913–3916. doi: 10.1073/pnas.89.9.3913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Inch W. R., McCredie J. A., Sutherland R. M. Effect of duration of breathing 95 percent oxygen plus 5 percent carbon dioxide before x-irradiation on cure of C3H mammary tumor. Cancer. 1970 Apr;25(4):926–931. doi: 10.1002/1097-0142(197004)25:4<926::aid-cncr2820250428>3.0.co;2-c. [DOI] [PubMed] [Google Scholar]
  19. Kallinen J., Didier A., Miller J. M., Nuttall A., Grénman R. The effect of CO2- and O2-gas mixtures on laser Doppler measured cochlear and skin blood flow in guinea pigs. Hear Res. 1991 Oct;55(2):255–262. doi: 10.1016/0378-5955(91)90110-u. [DOI] [PubMed] [Google Scholar]
  20. Kety S. S., Schmidt C. F. THE EFFECTS OF ALTERED ARTERIAL TENSIONS OF CARBON DIOXIDE AND OXYGEN ON CEREBRAL BLOOD FLOW AND CEREBRAL OXYGEN CONSUMPTION OF NORMAL YOUNG MEN. J Clin Invest. 1948 Jul;27(4):484–492. doi: 10.1172/JCI101995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Kruuv J. A., Inch W. R., McCredie J. A. Blood flow and oxygenation of tumors in mice. I. Effects of breathing gases containing carbon dioxide at atmospheric pressure. Cancer. 1967 Jan;20(1):51–59. doi: 10.1002/1097-0142(1967)20:1<51::aid-cncr2820200108>3.0.co;2-d. [DOI] [PubMed] [Google Scholar]
  22. Lanzen J. L., Braun R. D., Ong A. L., Dewhirst M. W. Variability in blood flow and pO2 in tumors in response to carbogen breathing. Int J Radiat Oncol Biol Phys. 1998 Nov 1;42(4):855–859. doi: 10.1016/s0360-3016(98)00312-5. [DOI] [PubMed] [Google Scholar]
  23. Libermann I. M., Capano A., Gonzalez F., Brazzuna H., Garcia H., De Gelabert G. Blood acid-base status in normal albino rats. Lab Anim Sci. 1973 Dec;23(6):862–865. [PubMed] [Google Scholar]
  24. Lioy F., Trzebski A. Pressor effect of CO2 in the rat: different thresholds of the central cardiovascular and respiratory responses to CO2. J Auton Nerv Syst. 1984 Mar;10(1):43–54. doi: 10.1016/0165-1838(84)90066-3. [DOI] [PubMed] [Google Scholar]
  25. Martin L. M., Thomas C. D., Guichard M. Nicotinamide and carbogen: relationship between pO2 and radiosensitivity in three tumour lines. Int J Radiat Biol. 1994 Mar;65(3):379–386. doi: 10.1080/09553009414550441. [DOI] [PubMed] [Google Scholar]
  26. Martin L., Lartigau E., Weeger P., Lambin P., Le Ridant A. M., Lusinchi A., Wibault P., Eschwege F., Luboinski B., Guichard M. Changes in the oxygenation of head and neck tumors during carbogen breathing. Radiother Oncol. 1993 May;27(2):123–130. doi: 10.1016/0167-8140(93)90132-r. [DOI] [PubMed] [Google Scholar]
  27. Mason R. P., Nunnally R. L., Antich P. P. Tissue oxygenation: a novel determination using 19F surface coil NMR spectroscopy of sequestered perfluorocarbon emulsion. Magn Reson Med. 1991 Mar;18(1):71–79. doi: 10.1002/mrm.1910180109. [DOI] [PubMed] [Google Scholar]
  28. Nielsen H., Aalkjaer C., Mulvany M. J. Differential contractile effects of changes in carbon dioxide tension on rat mesenteric resistance arteries precontracted with noradrenaline. Pflugers Arch. 1991 Aug;419(1):51–56. doi: 10.1007/BF00373747. [DOI] [PubMed] [Google Scholar]
  29. Nordsmark M., Overgaard M., Overgaard J. Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head and neck. Radiother Oncol. 1996 Oct;41(1):31–39. doi: 10.1016/s0167-8140(96)91811-3. [DOI] [PubMed] [Google Scholar]
  30. Overgaard J. Sensitization of hypoxic tumour cells--clinical experience. Int J Radiat Biol. 1989 Nov;56(5):801–811. doi: 10.1080/09553008914552081. [DOI] [PubMed] [Google Scholar]
  31. Overgaard J, Horsman MR. Modification of Hypoxia-Induced Radioresistance in Tumors by the Use of Oxygen and Sensitizers. Semin Radiat Oncol. 1996 Jan;6(1):10–21. doi: 10.1053/SRAO0060010. [DOI] [PubMed] [Google Scholar]
  32. Papenfuss H. D., Gross J. F., Intaglietta M., Treese F. A. A transparent access chamber for the rat dorsal skin fold. Microvasc Res. 1979 Nov;18(3):311–318. doi: 10.1016/0026-2862(79)90039-6. [DOI] [PubMed] [Google Scholar]
  33. Powell M. E., Hill S. A., Saunders M. I., Hoskin P. J., Chaplin D. J. Effect of carbogen breathing on tumour microregional blood flow in humans. Radiother Oncol. 1996 Dec;41(3):225–231. doi: 10.1016/s0167-8140(96)01833-6. [DOI] [PubMed] [Google Scholar]
  34. Powell M. E., Hill S. A., Saunders M. I., Hoskin P. J., Chaplin D. J. Human tumor blood flow is enhanced by nicotinamide and carbogen breathing. Cancer Res. 1997 Dec 1;57(23):5261–5264. [PubMed] [Google Scholar]
  35. Rojas A., Hirst V. K., Calvert A. S., Johns H. Carbogen and nicotinamide as radiosensitizers in a murine mammary carcinoma using conventional and accelerated radiotherapy. Int J Radiat Oncol Biol Phys. 1996 Jan 15;34(2):357–365. doi: 10.1016/0360-3016(95)02087-x. [DOI] [PubMed] [Google Scholar]
  36. Rojas A. Radiosensitization with normobaric oxygen and carbogen. Radiother Oncol. 1991;20 (Suppl 1):65–70. doi: 10.1016/0167-8140(91)90190-r. [DOI] [PubMed] [Google Scholar]
  37. Rubin P., Hanley J., Keys H. M., Marcial V., Brady L. Carbogen breathing during radiation therapy-the Radiation Therapy Oncology Group Study. Int J Radiat Oncol Biol Phys. 1979 Nov-Dec;5(11-12):1963–1970. doi: 10.1016/0360-3016(79)90946-5. [DOI] [PubMed] [Google Scholar]
  38. Sampson L. E., Chaplin D. J. The influence of microenvironment on the cytotoxicity of TNF [symbol: see text] vitro. Int J Radiat Oncol Biol Phys. 1994 Jun 15;29(3):467–471. doi: 10.1016/0360-3016(94)90440-5. [DOI] [PubMed] [Google Scholar]
  39. Secomb T. W., Hsu R., Ong E. T., Gross J. F., Dewhirst M. W. Analysis of the effects of oxygen supply and demand on hypoxic fraction in tumors. Acta Oncol. 1995;34(3):313–316. doi: 10.3109/02841869509093981. [DOI] [PubMed] [Google Scholar]
  40. Siemann D. W., Hill R. P., Bush R. S. The importance of the pre-irradiation breathing times of oxygen and carbogen (5% CO2: 95% O2) on the in vivo radiation response of a murine sarcoma. Int J Radiat Oncol Biol Phys. 1977 Sep-Oct;2(9-10):903–911. doi: 10.1016/0360-3016(77)90188-2. [DOI] [PubMed] [Google Scholar]
  41. Smith E., Stratford I. J., Adams G. E. Cytotoxicity of adriamycin on aerobic and hypoxic chinese hamster V79 cells in vitro. Br J Cancer. 1980 Oct;42(4):568–573. doi: 10.1038/bjc.1980.281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Smith T. L., Coleman T. G., Stanek K. A., Murphy W. R. Hemodynamic monitoring for 24 h in unanesthetized rats. Am J Physiol. 1987 Dec;253(6 Pt 2):H1335–H1341. doi: 10.1152/ajpheart.1987.253.6.H1335. [DOI] [PubMed] [Google Scholar]
  43. Song C. W., Lee I., Hasegawa T., Rhee J. G., Levitt S. H. Increase in pO2 and radiosensitivity of tumors by Fluosol-DA (20%) and carbogen. Cancer Res. 1987 Jan 15;47(2):442–446. [PubMed] [Google Scholar]
  44. THOMLINSON R. H., GRAY L. H. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer. 1955 Dec;9(4):539–549. doi: 10.1038/bjc.1955.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Teicher B. A., Schwartz G. N., Dupuis N. P., Kusomoto T., Liu M., Liu F., Northey D. Oxygenation of human tumor xenografts in nude mice by a perfluorochemical emulsion and carbogen breathing. Artif Cells Blood Substit Immobil Biotechnol. 1994;22(4):1369–1375. doi: 10.3109/10731199409138839. [DOI] [PubMed] [Google Scholar]
  46. Tozer G. M., Prise V. E., Bell K. M., Dennis M. F., Stratford M. R., Chaplin D. J. Reduced capacity of tumour blood vessels to produce endothelium-derived relaxing factor: significance for blood flow modification. Br J Cancer. 1996 Dec;74(12):1955–1960. doi: 10.1038/bjc.1996.659. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Yoshimoto S., Ishizaki Y., Sasaki T., Murota S. Effect of carbon dioxide and oxygen on endothelin production by cultured porcine cerebral endothelial cells. Stroke. 1991 Mar;22(3):378–383. doi: 10.1161/01.str.22.3.378. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES