Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Apr;80(1-2):73–78. doi: 10.1038/sj.bjc.6690324

Different gene expression of MDM2, GAGE-1, –2 and FHIT in hepatocellular carcinoma and focal nodular hyperplasia

T Schlott 1, K Ahrens 1, I Ruschenburg 1, S Reimer 1, H Hartmann 2, M Droese 1
PMCID: PMC2363011  PMID: 10389981

Abstract

Overexpression and/or mutations of oncogenes, tumour suppressor genes and tumour rejection genes have been observed in several human malignancies. Their analyses might be of diagnostic importance. Therefore, malignant hepatocytes derived from hepatocellular carcinoma (HCC) tissue as well as non-malignant hepatocytes derived from focal nodular hyperplasia (FNH) were studied. Samples containing normal human hepatocytes (HC) served as controls. Cellular material was obtained by fine-needle aspiration biopsy guided by ultrasound. Cells were analysed for expression and mutation of the oncogene MDM2, the genes GAGE-1, -2 coding for tumour-associated antigens and the candidate tumour suppressor gene FHIT. Different patterns of non-mutant FHIT transcripts including precise deletion of exons were found in 7/10 HCC, 2/10 FNH and 2/10 HC. However, expression of non-mutant GAGE-1, -2 RNA was demonstrated exclusively in 6/10 HCC samples. Further genetic features specific of HCC were point mutations in a zinc-finger motif of MDM2 (3/10 HCC samples). Neither GAGE-1, -2 expression nor MDM2 mutations were observed in the FNH samples, or in normal hepatocytes. Our findings suggest that occurrence of variable FHIT transcripts is not restricted to hepatic malignant tumours. In contrast, MDM2 mutations and GAGE-1, -2 expression were associated with HCC specimens. Therefore, the RT-PCR assays for GAGE-1, -2 and MDM2 might be useful adjuncts in cytodiagnosis of liver neoplasms. © 1999 Cancer Research Campaign

Keywords: fine-needle aspiration biopsy; hepatocellular carcinoma; focal nodular hyperplasia; MDM2; GAGE-1, GAGE-2; FHIT

Full Text

The Full Text of this article is available as a PDF (150.7 KB).

Footnotes

This study is a part of the doctoral dissertation of cand. med. K Ahrens

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albitar M., Peschle C., Liebhaber S. A. Theta, zeta, and epsilon globin messenger RNAs are expressed in adults. Blood. 1989 Aug 1;74(2):629–637. [PubMed] [Google Scholar]
  2. Boël P., Wildmann C., Sensi M. L., Brasseur R., Renauld J. C., Coulie P., Boon T., van der Bruggen P. BAGE: a new gene encoding an antigen recognized on human melanomas by cytolytic T lymphocytes. Immunity. 1995 Feb;2(2):167–175. doi: 10.1016/s1074-7613(95)80053-0. [DOI] [PubMed] [Google Scholar]
  3. Bueso-Ramos C. E., Yang Y., deLeon E., McCown P., Stass S. A., Albitar M. The human MDM-2 oncogene is overexpressed in leukemias. Blood. 1993 Nov 1;82(9):2617–2623. [PubMed] [Google Scholar]
  4. Chen Y. J., Chen P. H., Chang J. G. Aberrant FHIT transcripts in hepatocellular carcinomas. Br J Cancer. 1998;77(3):417–420. doi: 10.1038/bjc.1998.66. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cohen A. J., Li F. P., Berg S., Marchetto D. J., Tsai S., Jacobs S. C., Brown R. S. Hereditary renal-cell carcinoma associated with a chromosomal translocation. N Engl J Med. 1979 Sep 13;301(11):592–595. doi: 10.1056/NEJM197909133011107. [DOI] [PubMed] [Google Scholar]
  6. Fakharzadeh S. S., Trusko S. P., George D. L. Tumorigenic potential associated with enhanced expression of a gene that is amplified in a mouse tumor cell line. EMBO J. 1991 Jun;10(6):1565–1569. doi: 10.1002/j.1460-2075.1991.tb07676.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Finlay C. A. The mdm-2 oncogene can overcome wild-type p53 suppression of transformed cell growth. Mol Cell Biol. 1993 Jan;13(1):301–306. doi: 10.1128/mcb.13.1.301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fong K. M., Biesterveld E. J., Virmani A., Wistuba I., Sekido Y., Bader S. A., Ahmadian M., Ong S. T., Rassool F. V., Zimmerman P. V. FHIT and FRA3B 3p14.2 allele loss are common in lung cancer and preneoplastic bronchial lesions and are associated with cancer-related FHIT cDNA splicing aberrations. Cancer Res. 1997 Jun 1;57(11):2256–2267. [PubMed] [Google Scholar]
  9. Gaugler B., Van den Eynde B., van der Bruggen P., Romero P., Gaforio J. J., De Plaen E., Lethé B., Brasseur F., Boon T. Human gene MAGE-3 codes for an antigen recognized on a melanoma by autologous cytolytic T lymphocytes. J Exp Med. 1994 Mar 1;179(3):921–930. doi: 10.1084/jem.179.3.921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gemma A., Hagiwara K., Ke Y., Burke L. M., Khan M. A., Nagashima M., Bennett W. P., Harris C. C. FHIT mutations in human primary gastric cancer. Cancer Res. 1997 Apr 15;57(8):1435–1437. [PubMed] [Google Scholar]
  11. Hendricks D. T., Taylor R., Reed M., Birrer M. J. FHIT gene expression in human ovarian, endometrial, and cervical cancer cell lines. Cancer Res. 1997 Jun 1;57(11):2112–2115. [PubMed] [Google Scholar]
  12. Kastury K., Baffa R., Druck T., Ohta M., Cotticelli M. G., Inoue H., Negrini M., Rugge M., Huang D., Croce C. M. Potential gastrointestinal tumor suppressor locus at the 3p14.2 FRA3B site identified by homozygous deletions in tumor cell lines. Cancer Res. 1996 Mar 1;56(5):978–983. [PubMed] [Google Scholar]
  13. LaForgia S., Morse B., Levy J., Barnea G., Cannizzaro L. A., Li F., Nowell P. C., Boghosian-Sell L., Glick J., Weston A. Receptor protein-tyrosine phosphatase gamma is a candidate tumor suppressor gene at human chromosome region 3p21. Proc Natl Acad Sci U S A. 1991 Jun 1;88(11):5036–5040. doi: 10.1073/pnas.88.11.5036. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. LeBeau M. M., Rowley J. D. Heritable fragile sites in cancer. Nature. 1984 Apr 12;308(5960):607–608. doi: 10.1038/308607a0. [DOI] [PubMed] [Google Scholar]
  15. Lima C. D., Klein M. G., Weinstein I. B., Hendrickson W. A. Three-dimensional structure of human protein kinase C interacting protein 1, a member of the HIT family of proteins. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5357–5362. doi: 10.1073/pnas.93.11.5357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Léveillard T., Wasylyk B. The MDM2 C-terminal region binds to TAFII250 and is required for MDM2 regulation of the cyclin A promoter. J Biol Chem. 1997 Dec 5;272(49):30651–30661. doi: 10.1074/jbc.272.49.30651. [DOI] [PubMed] [Google Scholar]
  17. Momand J., Zambetti G. P., Olson D. C., George D., Levine A. J. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell. 1992 Jun 26;69(7):1237–1245. doi: 10.1016/0092-8674(92)90644-r. [DOI] [PubMed] [Google Scholar]
  18. Negrini M., Monaco C., Vorechovsky I., Ohta M., Druck T., Baffa R., Huebner K., Croce C. M. The FHIT gene at 3p14.2 is abnormal in breast carcinomas. Cancer Res. 1996 Jul 15;56(14):3173–3179. [PubMed] [Google Scholar]
  19. Ohnishi H., Kawamura M., Hanada R., Kaneko Y., Tsunoda Y., Hongo T., Bessho F., Yokomori K., Hayashi Y. Infrequent mutations of the TP53 gene and no amplification of the MDM2 gene in hepatoblastomas. Genes Chromosomes Cancer. 1996 Mar;15(3):187–190. doi: 10.1002/(SICI)1098-2264(199603)15:3<187::AID-GCC8>3.0.CO;2-Z. [DOI] [PubMed] [Google Scholar]
  20. Ohta M., Inoue H., Cotticelli M. G., Kastury K., Baffa R., Palazzo J., Siprashvili Z., Mori M., McCue P., Druck T. The FHIT gene, spanning the chromosome 3p14.2 fragile site and renal carcinoma-associated t(3;8) breakpoint, is abnormal in digestive tract cancers. Cell. 1996 Feb 23;84(4):587–597. doi: 10.1016/s0092-8674(00)81034-x. [DOI] [PubMed] [Google Scholar]
  21. Oliner J. D., Kinzler K. W., Meltzer P. S., George D. L., Vogelstein B. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature. 1992 Jul 2;358(6381):80–83. doi: 10.1038/358080a0. [DOI] [PubMed] [Google Scholar]
  22. Panagopoulos I., Thelin S., Mertens F., Mitelman F., Aman P. Variable FHIT transcripts in non-neoplastic tissues. Genes Chromosomes Cancer. 1997 Aug;19(4):215–219. doi: 10.1002/(sici)1098-2264(199708)19:4<215::aid-gcc2>3.0.co;2-#. [DOI] [PubMed] [Google Scholar]
  23. Russo V., Dalerba P., Ricci A., Bonazzi C., Leone B. E., Mangioni C., Allavena P., Bordignon C., Traversari C. MAGE BAGE and GAGE genes expression in fresh epithelial ovarian carcinomas. Int J Cancer. 1996 Jul 29;67(3):457–460. doi: 10.1002/(SICI)1097-0215(19960729)67:3<457::AID-IJC24>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
  24. Schlott T., Reimer S., Jahns A., Ohlenbusch A., Ruschenburg I., Nagel H., Droese M. Point mutations and nucleotide insertions in the MDM2 zinc finger structure of human tumours. J Pathol. 1997 May;182(1):54–61. doi: 10.1002/(SICI)1096-9896(199705)182:1<54::AID-PATH815>3.0.CO;2-I. [DOI] [PubMed] [Google Scholar]
  25. Sigalas I., Calvert A. H., Anderson J. J., Neal D. E., Lunec J. Alternatively spliced mdm2 transcripts with loss of p53 binding domain sequences: transforming ability and frequent detection in human cancer. Nat Med. 1996 Aug;2(8):912–917. doi: 10.1038/nm0896-912. [DOI] [PubMed] [Google Scholar]
  26. Sozzi G., Sard L., De Gregorio L., Marchetti A., Musso K., Buttitta F., Tornielli S., Pellegrini S., Veronese M. L., Manenti G. Association between cigarette smoking and FHIT gene alterations in lung cancer. Cancer Res. 1997 Jun 1;57(11):2121–2123. [PubMed] [Google Scholar]
  27. Sozzi G., Veronese M. L., Negrini M., Baffa R., Cotticelli M. G., Inoue H., Tornielli S., Pilotti S., De Gregorio L., Pastorino U. The FHIT gene 3p14.2 is abnormal in lung cancer. Cell. 1996 Apr 5;85(1):17–26. doi: 10.1016/s0092-8674(00)81078-8. [DOI] [PubMed] [Google Scholar]
  28. Thiagalingam S., Lisitsyn N. A., Hamaguchi M., Wigler M. H., Willson J. K., Markowitz S. D., Leach F. S., Kinzler K. W., Vogelstein B. Evaluation of the FHIT gene in colorectal cancers. Cancer Res. 1996 Jul 1;56(13):2936–2939. [PubMed] [Google Scholar]
  29. Van den Eynde B., Peeters O., De Backer O., Gaugler B., Lucas S., Boon T. A new family of genes coding for an antigen recognized by autologous cytolytic T lymphocytes on a human melanoma. J Exp Med. 1995 Sep 1;182(3):689–698. doi: 10.1084/jem.182.3.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Virgilio L., Shuster M., Gollin S. M., Veronese M. L., Ohta M., Huebner K., Croce C. M. FHIT gene alterations in head and neck squamous cell carcinomas. Proc Natl Acad Sci U S A. 1996 Sep 3;93(18):9770–9775. doi: 10.1073/pnas.93.18.9770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wang N., Perkins K. L. Involvement of band 3p14 in t(3;8) hereditary renal carcinoma. Cancer Genet Cytogenet. 1984 Apr;11(4):479–481. doi: 10.1016/0165-4608(84)90028-1. [DOI] [PubMed] [Google Scholar]
  32. Weijland A., Parmeggiani A. Why do two EF-Tu molecules act in the elongation cycle of protein biosynthesis? Trends Biochem Sci. 1994 May;19(5):188–193. doi: 10.1016/0968-0004(94)90018-3. [DOI] [PubMed] [Google Scholar]
  33. Yamashita N., Ishibashi H., Hayashida K., Kudo J., Takenaka K., Itoh K., Niho Y. High frequency of the MAGE-1 gene expression in hepatocellular carcinoma. Hepatology. 1996 Dec;24(6):1437–1440. doi: 10.1053/jhep.1996.v24.pm0008938177. [DOI] [PubMed] [Google Scholar]
  34. van der Bruggen P., Traversari C., Chomez P., Lurquin C., De Plaen E., Van den Eynde B., Knuth A., Boon T. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science. 1991 Dec 13;254(5038):1643–1647. doi: 10.1126/science.1840703. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES