Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Jun;80(7):991–997. doi: 10.1038/sj.bjc.6690453

α-Bromoacryloyl derivative of distamycin A (PNU 151807): a new non-covalent minor groove DNA binder with antineoplastic activity

S Marchini 1, M Cirò 1, F Gallinari 1, C Geroni 2, P Cozzi 2, M D'Incalci 1, M Broggini 1
PMCID: PMC2363030  PMID: 10362106

Abstract

PNU 151807 is a new synthetic α-bromoacryloyl derivative of distamycin A. In the present study we investigated the DNA interaction and the mechanism of action of this compound in parallel with the distamycin alkylating derivative, tallimustine. PNU 151807 possesses a good cytotoxic activity in in vitro growing cancer cells, even superior to that found for tallimustine. By footprinting experiments we found that PNU 151807 and tallimustine interact non-covalently with the same AT-rich DNA regions. However, differently from tallimustine, PNU 151807 failed to produce any DNA alkylation as assessed by Taq stop assay and N3 or N7-adenine alkylation assay in different DNA sequences. PNU 151807, like tallimustine, is able to induce an activation of p53, and consequently of p21 and BAX in a human ovarian cancer cell line (A2780) expressing wild-type p53. However, disruption of p53 function by HPV16-E6 does not significantly modify the cytotoxic activity of the compound. Flow cytometric analysis of cells treated with equitoxic concentrations of PNU 151807 and tallimustine showed a similar induction of accumulation of cells in the G2 phase of the cell cycle but with a different time course. When tested against recombinant proteins, only the compound PNU 151807 (and not tallimustine or distamycin A) is able to abolish the in vitro kinase activity of CDK2–cyclin A, CDK2–cyclin E and cdc2–cyclin B complexes. The results obtained showed that PNU 151807 seems to have a mechanism of action completely different from that of its parent compound tallimustine, possibly involving the inhibition of cyclin-dependent kinases activity, and clearly indicate PNU 151807 as a new non-covalent minor groove binder with cytotoxic activity against cancer cells. © 1999 Cancer Research Campaign

Keywords: minor groove binders, cyclin-dependent kinases, DNA binding, anticancer agents

Full Text

The Full Text of this article is available as a PDF (337.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bonfanti M., Taverna S., Salmona M., D'Incalci M., Broggini M. p21WAF1-derived peptides linked to an internalization peptide inhibit human cancer cell growth. Cancer Res. 1997 Apr 15;57(8):1442–1446. [PubMed] [Google Scholar]
  2. Broggini M., Coley H. M., Mongelli N., Pesenti E., Wyatt M. D., Hartley J. A., D'Incalci M. DNA sequence-specific adenine alkylation by the novel antitumor drug tallimustine (FCE 24517), a benzoyl nitrogen mustard derivative of distamycin. Nucleic Acids Res. 1995 Jan 11;23(1):81–87. doi: 10.1093/nar/23.1.81. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Broggini M., Erba E., Ponti M., Ballinari D., Geroni C., Spreafico F., D'Incalci M. Selective DNA interaction of the novel distamycin derivative FCE 24517. Cancer Res. 1991 Jan 1;51(1):199–204. [PubMed] [Google Scholar]
  4. D'Incalci M. DNA-minor-groove alkylators, a new class of anticancer agents. Ann Oncol. 1994 Dec;5(10):877–878. doi: 10.1093/oxfordjournals.annonc.a058724. [DOI] [PubMed] [Google Scholar]
  5. D'Incalci M., Sessa C. DNA minor groove binding ligands: a new class of anticancer agents. Expert Opin Investig Drugs. 1997 Jul;6(7):875–884. doi: 10.1517/13543784.6.7.875. [DOI] [PubMed] [Google Scholar]
  6. Drees M., Dengler W. A., Roth T., Labonte H., Mayo J., Malspeis L., Grever M., Sausville E. A., Fiebig H. H. Flavopiridol (L86-8275): selective antitumor activity in vitro and activity in vivo for prostate carcinoma cells. Clin Cancer Res. 1997 Feb;3(2):273–279. [PubMed] [Google Scholar]
  7. Geroni C., Pesenti E., Tagliabue G., Ballinari D., Mongelli N., Broggini M., Erba E., D'Incalci M., Spreafico F., Grandi M. Establishment of L1210 leukemia cells resistant to the distamycin-A derivative (FCE 24517): characterization and cross-resistance studies. Int J Cancer. 1993 Jan 21;53(2):308–314. doi: 10.1002/ijc.2910530223. [DOI] [PubMed] [Google Scholar]
  8. Ghielmini M., Bosshard G., Capolongo L., Geroni M. C., Pesenti E., Torri V., D'Incalci M., Cavalli F., Sessa C. Estimation of the haematological toxicity of minor groove alkylators using tests on human cord blood cells. Br J Cancer. 1997;75(6):878–883. doi: 10.1038/bjc.1997.155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hartley J. A., Gibson N. W., Kohn K. W., Mattes W. B. DNA sequence selectivity of guanine-N7 alkylation by three antitumor chloroethylating agents. Cancer Res. 1986 Apr;46(4 Pt 2):1943–1947. [PubMed] [Google Scholar]
  10. Hartley J. A., Lown J. W., Mattes W. B., Kohn K. W. DNA sequence specificity of antitumor agents. Oncogenes as possible targets for cancer therapy. Acta Oncol. 1988;27(5):503–510. doi: 10.3109/02841868809093578. [DOI] [PubMed] [Google Scholar]
  11. Hertzberg R. P., Dervan P. B. Cleavage of DNA with methidiumpropyl-EDTA-iron(II): reaction conditions and product analyses. Biochemistry. 1984 Aug 14;23(17):3934–3945. doi: 10.1021/bi00312a022. [DOI] [PubMed] [Google Scholar]
  12. Hurley L. H., Reynolds V. L., Swenson D. H., Petzold G. L., Scahill T. A. Reaction of the antitumor antibiotic CC-1065 with DNA: structure of a DNA adduct with DNA sequence specificity. Science. 1984 Nov 16;226(4676):843–844. doi: 10.1126/science.6494915. [DOI] [PubMed] [Google Scholar]
  13. Lee M., Rhodes A. L., Wyatt M. D., Forrow S., Hartley J. A. Design, synthesis, and biological evaluation of DNA sequence and minor groove selective alkylating agents. Anticancer Drug Des. 1993 Jun;8(3):173–192. [PubMed] [Google Scholar]
  14. Li L. H., DeKoning T. F., Kelly R. C., Krueger W. C., McGovren J. P., Padbury G. E., Petzold G. L., Wallace T. L., Ouding R. J., Prairie M. D. Cytotoxicity and antitumor activity of carzelesin, a prodrug cyclopropylpyrroloindole analogue. Cancer Res. 1992 Sep 15;52(18):4904–4913. [PubMed] [Google Scholar]
  15. Li L. H., Swenson D. H., Schpok S. L., Kuentzel S. L., Dayton B. D., Krueger W. C. CC-1065 (NSC 298223), a novel antitumor agent that interacts strongly with double-stranded DNA. Cancer Res. 1982 Mar;42(3):999–1004. [PubMed] [Google Scholar]
  16. Marchini S., Gonzalez Paz O., Ripamonti M., Geroni C., Bargiotti A., Caruso M., Todeschi S., D'Incalci M., Broggini M. Sequence-specific DNA interactions by novel alkylating anthracycline derivatives. Anticancer Drug Des. 1995 Dec;10(8):641–653. [PubMed] [Google Scholar]
  17. Mattes W. B., Hartley J. A., Kohn K. W. DNA sequence selectivity of guanine-N7 alkylation by nitrogen mustards. Nucleic Acids Res. 1986 Apr 11;14(7):2971–2987. doi: 10.1093/nar/14.7.2971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Ponti M., Forrow S. M., Souhami R. L., D'Incalci M., Hartley J. A. Measurement of the sequence specificity of covalent DNA modification by antineoplastic agents using Taq DNA polymerase. Nucleic Acids Res. 1991 Jun 11;19(11):2929–2933. doi: 10.1093/nar/19.11.2929. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Reynolds V. L., Molineux I. J., Kaplan D. J., Swenson D. H., Hurley L. H. Reaction of the antitumor antibiotic CC-1065 with DNA. Location of the site of thermally induced strand breakage and analysis of DNA sequence specificity. Biochemistry. 1985 Oct 22;24(22):6228–6237. doi: 10.1021/bi00343a029. [DOI] [PubMed] [Google Scholar]
  20. Sessa C., Pagani O., Zurlo M. G., de Jong J., Hofmann C., Lassus M., Marrari P., Strolin Benedetti M., Cavalli F. Phase I study of the novel distamycin derivative tallimustine (FCE 24517). Ann Oncol. 1994 Dec;5(10):901–907. doi: 10.1093/oxfordjournals.annonc.a058728. [DOI] [PubMed] [Google Scholar]
  21. Sun D., Hurley L. H. Effect of the (+)-CC-1065-(N3-adenine)DNA adduct on in vitro DNA synthesis mediated by Escherichia coli DNA polymerase. Biochemistry. 1992 Mar 17;31(10):2822–2829. doi: 10.1021/bi00125a025. [DOI] [PubMed] [Google Scholar]
  22. Tishler R. B., Lamppu D. M., Park S., Price B. D. Microtubule-active drugs taxol, vinblastine, and nocodazole increase the levels of transcriptionally active p53. Cancer Res. 1995 Dec 15;55(24):6021–6025. [PubMed] [Google Scholar]
  23. Vikhanskaya F., Erba E., D'Incalci M., Broggini M. Introduction of wild-type p53 in a human ovarian cancer cell line not expressing endogenous p53. Nucleic Acids Res. 1994 Mar 25;22(6):1012–1017. doi: 10.1093/nar/22.6.1012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Vikhanskaya F., Vignati S., Beccaglia P., Ottoboni C., Russo P., D'Incalci M., Broggini M. Inactivation of p53 in a human ovarian cancer cell line increases the sensitivity to paclitaxel by inducing G2/M arrest and apoptosis. Exp Cell Res. 1998 May 25;241(1):96–101. doi: 10.1006/excr.1998.4018. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES