Abstract
[Arg6,D-Trp7,9,NmePhe8]-substance P (6–11) (antagonist G) is a novel class of anti-cancer agent that inhibits small-cell lung cancer (SCLC) cell growth in vitro and in vivo and is entering phase II clinical investigation for the treatment of SCLC. Although antagonist G blocks SCLC cell growth (IC50 = 24.5 ± 1.5 and 38.5 ± 1.5 μM for the H69 and H510 cell lines respectively), its exact mechanism of action is unclear. This study shows that antagonist G stimulates apoptosis as assessed by morphology (EC50 = 5.9 ± 0.1 and 15.2 ± 2.7 μM for the H69 and H510 cell lines respectively) and stimulates c-jun-N-terminal kinase (JNK) activity in SCLC cells (EC50 = 3.2 ± 0.1 and 15.2 ± 2.7 μM). This activity is neuropeptide-independent, but dependent on the generation of reactive oxygen species (ROS) and is inhibited by the free radical scavenger n-acetyl cysteine. Furthermore, antagonist G itself induces inflammation (59% increase in oedema volume compared to control) and potentiates (by 35–40%) bradykinin-induced oedema formation in vivo. In view of these results we show that, as well as acting as a ‘broad-spectrum’ neuropeptide antagonist, antagonist G stimulates basal G-protein activity in SCLC cell membranes (81 ± 12% stimulation at 10 μM), thereby displaying a unique ability to stimulate certain signal transduction pathways by activating G-proteins. This novel activity may be instrumental for full anti-cancer activity in SCLC cells and may also account for antagonist G activity in non-neuropeptide-dependent cancers. © 1999 Cancer Research Campaign
Keywords: antagonist G, SCLC, JNK, apoptosis, G-protein, neuropeptide
Full Text
The Full Text of this article is available as a PDF (194.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Althoefer H., Eversole-Cire P., Simon M. I. Constitutively active Galphaq and Galpha13 trigger apoptosis through different pathways. J Biol Chem. 1997 Sep 26;272(39):24380–24386. doi: 10.1074/jbc.272.39.24380. [DOI] [PubMed] [Google Scholar]
- Armstrong R. A., Marr C., Jones R. L. Characterization of the EP-receptor mediating dilatation and potentiation of inflammation in rabbit skin. Prostaglandins. 1995 Apr;49(4):205–224. doi: 10.1016/0090-6980(95)00015-3. [DOI] [PubMed] [Google Scholar]
- Blumer K. J., Johnson G. L. Diversity in function and regulation of MAP kinase pathways. Trends Biochem Sci. 1994 Jun;19(6):236–240. doi: 10.1016/0968-0004(94)90147-3. [DOI] [PubMed] [Google Scholar]
- Brain S. D., Williams T. J. Inflammatory oedema induced by synergism between calcitonin gene-related peptide (CGRP) and mediators of increased vascular permeability. Br J Pharmacol. 1985 Dec;86(4):855–860. doi: 10.1111/j.1476-5381.1985.tb11107.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bush R. S., Jenkin R. D., Allt W. E., Beale F. A., Bean H., Dembo A. J., Pringle J. F. Definitive evidence for hypoxic cells influencing cure in cancer therapy. Br J Cancer Suppl. 1978 Jun;3:302–306. [PMC free article] [PubMed] [Google Scholar]
- Butterfield L., Storey B., Maas L., Heasley L. E. c-Jun NH2-terminal kinase regulation of the apoptotic response of small cell lung cancer cells to ultraviolet radiation. J Biol Chem. 1997 Apr 11;272(15):10110–10116. doi: 10.1074/jbc.272.15.10110. [DOI] [PubMed] [Google Scholar]
- Buttke T. M., Sandstrom P. A. Oxidative stress as a mediator of apoptosis. Immunol Today. 1994 Jan;15(1):7–10. doi: 10.1016/0167-5699(94)90018-3. [DOI] [PubMed] [Google Scholar]
- Chen Y. R., Meyer C. F., Tan T. H. Persistent activation of c-Jun N-terminal kinase 1 (JNK1) in gamma radiation-induced apoptosis. J Biol Chem. 1996 Jan 12;271(2):631–634. doi: 10.1074/jbc.271.2.631. [DOI] [PubMed] [Google Scholar]
- Coso O. A., Chiariello M., Kalinec G., Kyriakis J. M., Woodgett J., Gutkind J. S. Transforming G protein-coupled receptors potently activate JNK (SAPK). Evidence for a divergence from the tyrosine kinase signaling pathway. J Biol Chem. 1995 Mar 10;270(10):5620–5624. doi: 10.1074/jbc.270.10.5620. [DOI] [PubMed] [Google Scholar]
- Coso O. A., Chiariello M., Yu J. C., Teramoto H., Crespo P., Xu N., Miki T., Gutkind J. S. The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell. 1995 Jun 30;81(7):1137–1146. doi: 10.1016/s0092-8674(05)80018-2. [DOI] [PubMed] [Google Scholar]
- Cunnick J. M., Dorsey J. F., Standley T., Turkson J., Kraker A. J., Fry D. W., Jove R., Wu J. Role of tyrosine kinase activity of epidermal growth factor receptor in the lysophosphatidic acid-stimulated mitogen-activated protein kinase pathway. J Biol Chem. 1998 Jun 5;273(23):14468–14475. doi: 10.1074/jbc.273.23.14468. [DOI] [PubMed] [Google Scholar]
- Cuttitta F., Carney D. N., Mulshine J., Moody T. W., Fedorko J., Fischler A., Minna J. D. Bombesin-like peptides can function as autocrine growth factors in human small-cell lung cancer. 1985 Aug 29-Sep 4Nature. 316(6031):823–826. doi: 10.1038/316823a0. [DOI] [PubMed] [Google Scholar]
- Everard M. J., Macaulay V. M., Miller J. L., Smith I. E. In vitro effects of substance P analogue [D-Arg1, D-Phe5, D-Trp7,9, Leu11] substance P on human tumour and normal cell growth. Br J Cancer. 1992 Mar;65(3):388–392. doi: 10.1038/bjc.1992.78. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Freissmuth M., Boehm S., Beindl W., Nickel P., Ijzerman A. P., Hohenegger M., Nanoff C. Suramin analogues as subtype-selective G protein inhibitors. Mol Pharmacol. 1996 Apr;49(4):602–611. [PubMed] [Google Scholar]
- Gohla A., Harhammer R., Schultz G. The G-protein G13 but not G12 mediates signaling from lysophosphatidic acid receptor via epidermal growth factor receptor to Rho. J Biol Chem. 1998 Feb 20;273(8):4653–4659. doi: 10.1074/jbc.273.8.4653. [DOI] [PubMed] [Google Scholar]
- Heasley L. E., Storey B., Fanger G. R., Butterfield L., Zamarripa J., Blumberg D., Maue R. A. GTPase-deficient G alpha 16 and G alpha q induce PC12 cell differentiation and persistent activation of cJun NH2-terminal kinases. Mol Cell Biol. 1996 Feb;16(2):648–656. doi: 10.1128/mcb.16.2.648. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Janssen Y. M., Matalon S., Mossman B. T. Differential induction of c-fos, c-jun, and apoptosis in lung epithelial cells exposed to ROS or RNS. Am J Physiol. 1997 Oct;273(4 Pt 1):L789–L796. doi: 10.1152/ajplung.1997.273.4.L789. [DOI] [PubMed] [Google Scholar]
- Kado-Fong H., Malfroy B. Effects of bombesin on human small cell lung cancer cells: evidence for a subset of bombesin non-responsive cell lines. J Cell Biochem. 1989 Aug;40(4):431–437. doi: 10.1002/jcb.240400404. [DOI] [PubMed] [Google Scholar]
- Kerr J. F., Wyllie A. H., Currie A. R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer. 1972 Aug;26(4):239–257. doi: 10.1038/bjc.1972.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kyprianou N., English H. F., Davidson N. E., Isaacs J. T. Programmed cell death during regression of the MCF-7 human breast cancer following estrogen ablation. Cancer Res. 1991 Jan 1;51(1):162–166. [PubMed] [Google Scholar]
- Laderoute K. R., Webster K. A. Hypoxia/reoxygenation stimulates Jun kinase activity through redox signaling in cardiac myocytes. Circ Res. 1997 Mar;80(3):336–344. doi: 10.1161/01.res.80.3.336. [DOI] [PubMed] [Google Scholar]
- Lander H. M., Jacovina A. T., Davis R. J., Tauras J. M. Differential activation of mitogen-activated protein kinases by nitric oxide-related species. J Biol Chem. 1996 Aug 16;271(33):19705–19709. doi: 10.1074/jbc.271.33.19705. [DOI] [PubMed] [Google Scholar]
- Mitchell F. M., Heasley L. E., Qian N. X., Zamarripa J., Johnson G. L. Differential modulation of bombesin-stimulated phospholipase C beta and mitogen-activated protein kinase activity by [D-Arg1,D-Phe5,D-Trp7,9,Leu11]substance P. J Biol Chem. 1995 Apr 14;270(15):8623–8628. doi: 10.1074/jbc.270.15.8623. [DOI] [PubMed] [Google Scholar]
- Moody T. W., Pert C. B., Gazdar A. F., Carney D. N., Minna J. D. High levels of intracellular bombesin characterize human small-cell lung carcinoma. Science. 1981 Dec 11;214(4526):1246–1248. doi: 10.1126/science.6272398. [DOI] [PubMed] [Google Scholar]
- Mousli M., Bueb J. L., Bronner C., Rouot B., Landry Y. G protein activation: a receptor-independent mode of action for cationic amphiphilic neuropeptides and venom peptides. Trends Pharmacol Sci. 1990 Sep;11(9):358–362. doi: 10.1016/0165-6147(90)90179-c. [DOI] [PubMed] [Google Scholar]
- Mukai H., Munekata E., Higashijima T. G protein antagonists. A novel hydrophobic peptide competes with receptor for G protein binding. J Biol Chem. 1992 Aug 15;267(23):16237–16243. [PubMed] [Google Scholar]
- Prasad M. V., Dermott J. M., Heasley L. E., Johnson G. L., Dhanasekaran N. Activation of Jun kinase/stress-activated protein kinase by GTPase-deficient mutants of G alpha 12 and G alpha 13. J Biol Chem. 1995 Aug 4;270(31):18655–18659. doi: 10.1074/jbc.270.31.18655. [DOI] [PubMed] [Google Scholar]
- Raff M. C. Social controls on cell survival and cell death. Nature. 1992 Apr 2;356(6368):397–400. doi: 10.1038/356397a0. [DOI] [PubMed] [Google Scholar]
- Seckl M. J., Higgins T., Rozengurt E. [D-Arg1,D-Trp5,7,9,Leu11]Substance P coordinately and reversibly inhibits bombesin- and vasopressin-induced signal transduction pathways in Swiss 3T3 cells. J Biol Chem. 1996 Nov 15;271(46):29453–29460. doi: 10.1074/jbc.271.46.29453. [DOI] [PubMed] [Google Scholar]
- Seckl M. J., Higgins T., Widmer F., Rozengurt E. [D-Arg1,D-Trp5,7,9,Leu11]substance P: a novel potent inhibitor of signal transduction and growth in vitro and in vivo in small cell lung cancer cells. Cancer Res. 1997 Jan 1;57(1):51–54. [PubMed] [Google Scholar]
- Seckl M. J., Newman R. H., Freemont P. S., Rozengurt E. Substance P-related antagonists inhibit vasopressin and bombesin but not 5'-3-O-(thio)triphosphate-stimulated inositol phosphate production in Swiss 3T3 cells. J Cell Physiol. 1995 Apr;163(1):87–95. doi: 10.1002/jcp.1041630110. [DOI] [PubMed] [Google Scholar]
- Sethi T., Langdon S., Smyth J., Rozengurt E. Growth of small cell lung cancer cells: stimulation by multiple neuropeptides and inhibition by broad spectrum antagonists in vitro and in vivo. Cancer Res. 1992 May 1;52(9 Suppl):2737s–2742s. [PubMed] [Google Scholar]
- Sethi T., Rozengurt E. Galanin stimulates Ca2+ mobilization, inositol phosphate accumulation, and clonal growth in small cell lung cancer cells. Cancer Res. 1991 Mar 15;51(6):1674–1679. [PubMed] [Google Scholar]
- Sethi T., Rozengurt E. Multiple neuropeptides stimulate clonal growth of small cell lung cancer: effects of bradykinin, vasopressin, cholecystokinin, galanin, and neurotensin. Cancer Res. 1991 Jul 1;51(13):3621–3623. [PubMed] [Google Scholar]
- Seufferlein T., Rozengurt E. Galanin, neurotensin, and phorbol esters rapidly stimulate activation of mitogen-activated protein kinase in small cell lung cancer cells. Cancer Res. 1996 Dec 15;56(24):5758–5764. [PubMed] [Google Scholar]
- Smyth J. F., Fowlie S. M., Gregor A., Crompton G. K., Busuttil A., Leonard R. C., Grant I. W. The impact of chemotherapy on small cell carcinoma of the bronchus. Q J Med. 1986 Oct;61(234):969–976. [PubMed] [Google Scholar]
- Tallett A., Chilvers E. R., Hannah S., Dransfield I., Lawson M. F., Haslett C., Sethi T. Inhibition of neuropeptide-stimulated tyrosine phosphorylation and tyrosine kinase activity stimulates apoptosis in small cell lung cancer cells. Cancer Res. 1996 Sep 15;56(18):4255–4263. [PubMed] [Google Scholar]
- Verheij M., Bose R., Lin X. H., Yao B., Jarvis W. D., Grant S., Birrer M. J., Szabo E., Zon L. I., Kyriakis J. M. Requirement for ceramide-initiated SAPK/JNK signalling in stress-induced apoptosis. Nature. 1996 Mar 7;380(6569):75–79. doi: 10.1038/380075a0. [DOI] [PubMed] [Google Scholar]
- Weiland T., Jakobs K. H. Measurement of receptor-stimulated guanosine 5'-O-(gamma-thio)triphosphate binding by G proteins. Methods Enzymol. 1994;237:3–13. doi: 10.1016/s0076-6879(94)37048-6. [DOI] [PubMed] [Google Scholar]
- Williams T. J. Prostaglandin E2, prostaglandin I2 and the vascular changes of inflammation. Br J Pharmacol. 1979 Mar;65(3):517–524. doi: 10.1111/j.1476-5381.1979.tb07860.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Woll P. J., Rozengurt E. Multiple neuropeptides mobilise calcium in small cell lung cancer: effects of vasopressin, bradykinin, cholecystokinin, galanin and neurotensin. Biochem Biophys Res Commun. 1989 Oct 16;164(1):66–73. doi: 10.1016/0006-291x(89)91683-5. [DOI] [PubMed] [Google Scholar]
- Woll P. J., Rozengurt E. [D-Arg1,D-Phe5,D-Trp7,9,Leu11]substance P, a potent bombesin antagonist in murine Swiss 3T3 cells, inhibits the growth of human small cell lung cancer cells in vitro. Proc Natl Acad Sci U S A. 1988 Mar;85(6):1859–1863. doi: 10.1073/pnas.85.6.1859. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Xia Z., Dickens M., Raingeaud J., Davis R. J., Greenberg M. E. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science. 1995 Nov 24;270(5240):1326–1331. doi: 10.1126/science.270.5240.1326. [DOI] [PubMed] [Google Scholar]
- Xu Y., Bradham C., Brenner D. A., Czaja M. J. Hydrogen peroxide-induced liver cell necrosis is dependent on AP-1 activation. Am J Physiol. 1997 Oct;273(4 Pt 1):G795–G803. doi: 10.1152/ajpgi.1997.273.4.G795. [DOI] [PubMed] [Google Scholar]
- Zachary I., Sinnett-Smith J. W., Rozengurt E. Early events elicited by bombesin and structurally related peptides in quiescent Swiss 3T3 cells. I. Activation of protein kinase C and inhibition of epidermal growth factor binding. J Cell Biol. 1986 Jun;102(6):2211–2222. doi: 10.1083/jcb.102.6.2211. [DOI] [PMC free article] [PubMed] [Google Scholar]