Abstract
To understand the role of p53 tumour suppressor gene in the carcinogenesis of arsenic-related skin cancers from the blackfoot disease endemic area of Taiwan, we collected tumour samples from 23 patients with Bowen's disease, seven patients with basal cell carcinomas (BCC) and nine patients with squamous cell carcinomas (SCC). The result showed that p53 gene mutations were found in 39% of cases with Bowen's disease (9/23), 28.6% of cases with BCC (2/7) and 55.6% of cases with SCC (5/9). Most of the mutation sites were located on exon 5 and exon 8. Moreover, the results from direct sequencing indicated that missense mutations were found at codon 149 (C→T) in one case, codon 175 (G→A) in three cases, codon 273 (G→C) in three cases, codon 292 (T→A) in one case, codon 283 (G→T) in one case, codon 172 (T→C) in one case and codon 284 (C→A) in one case. In addition, silent mutations were also found in four cases. These mutations were located at codons 174, 253, 289 and 298 respectively. In immunohistochemistry analysis, p53 overexpression was found in 43.5% (10/23) of cases with Bowen's disease, 14% (1/7) of cases with BCC and 44% (4/9) of cases with SSC. These findings showed that p53 gene mutation rate in arsenic-related skin cancers from the blackfoot disease endemic area of Taiwan is high and that the mutation types are different from those in UV-induced skin cancers. © 1999 Cancer Research Campaign
Keywords: p53 gene, arsenic-related skin cancers
Full Text
The Full Text of this article is available as a PDF (1.5 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Berg R. J., van Kranen H. J., Rebel H. G., de Vries A., van Vloten W. A., Van Kreijl C. F., van der Leun J. C., de Gruijl F. R. Early p53 alterations in mouse skin carcinogenesis by UVB radiation: immunohistochemical detection of mutant p53 protein in clusters of preneoplastic epidermal cells. Proc Natl Acad Sci U S A. 1996 Jan 9;93(1):274–278. doi: 10.1073/pnas.93.1.274. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bishop J. M. Molecular themes in oncogenesis. Cell. 1991 Jan 25;64(2):235–248. doi: 10.1016/0092-8674(91)90636-d. [DOI] [PubMed] [Google Scholar]
- Brown K. G., Chen C. J. Significance of exposure assessment to analysis of cancer risk from inorganic arsenic in drinking water in Taiwan. Risk Anal. 1995 Aug;15(4):475–484. doi: 10.1111/j.1539-6924.1995.tb00340.x. [DOI] [PubMed] [Google Scholar]
- Cavigelli M., Li W. W., Lin A., Su B., Yoshioka K., Karin M. The tumor promoter arsenite stimulates AP-1 activity by inhibiting a JNK phosphatase. EMBO J. 1996 Nov 15;15(22):6269–6279. [PMC free article] [PubMed] [Google Scholar]
- Chen C. J., Wu M. M., Lee S. S., Wang J. D., Cheng S. H., Wu H. Y. Atherogenicity and carcinogenicity of high-arsenic artesian well water. Multiple risk factors and related malignant neoplasms of blackfoot disease. Arteriosclerosis. 1988 Sep-Oct;8(5):452–460. doi: 10.1161/01.atv.8.5.452. [DOI] [PubMed] [Google Scholar]
- Chiang H. S., Guo H. R., Hong C. L., Lin S. M., Lee E. F. The incidence of bladder cancer in the black foot disease endemic area in Taiwan. Br J Urol. 1993 Mar;71(3):274–278. doi: 10.1111/j.1464-410x.1993.tb15942.x. [DOI] [PubMed] [Google Scholar]
- Chiou H. Y., Hsueh Y. M., Liaw K. F., Horng S. F., Chiang M. H., Pu Y. S., Lin J. S., Huang C. H., Chen C. J. Incidence of internal cancers and ingested inorganic arsenic: a seven-year follow-up study in Taiwan. Cancer Res. 1995 Mar 15;55(6):1296–1300. [PubMed] [Google Scholar]
- Debec A., Courgeon A. M., Maingourd M., Maisonhaute C. The response of the centrosome to heat shock and related stresses in a Drosophila cell line. J Cell Sci. 1990 Jul;96(Pt 3):403–412. doi: 10.1242/jcs.96.3.403. [DOI] [PubMed] [Google Scholar]
- Drouin R., Therrien J. P. UVB-induced cyclobutane pyrimidine dimer frequency correlates with skin cancer mutational hotspots in p53. Photochem Photobiol. 1997 Nov;66(5):719–726. doi: 10.1111/j.1751-1097.1997.tb03213.x. [DOI] [PubMed] [Google Scholar]
- Hsueh Y. M., Cheng G. S., Wu M. M., Yu H. S., Kuo T. L., Chen C. J. Multiple risk factors associated with arsenic-induced skin cancer: effects of chronic liver disease and malnutritional status. Br J Cancer. 1995 Jan;71(1):109–114. doi: 10.1038/bjc.1995.22. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hsueh Y. M., Huang Y. L., Huang C. C., Wu W. L., Chen H. M., Yang M. H., Lue L. C., Chen C. J. Urinary levels of inorganic and organic arsenic metabolites among residents in an arseniasis-hyperendemic area in Taiwan. J Toxicol Environ Health A. 1998 Jul 24;54(6):431–444. doi: 10.1080/009841098158728. [DOI] [PubMed] [Google Scholar]
- Inga A., Scott G., Monti P., Aprile A., Abbondandolo A., Burns P. A., Fronza G. Ultraviolet-light induced p53 mutational spectrum in yeast is indistinguishable from p53 mutations in human skin cancer. Carcinogenesis. 1998 May;19(5):741–746. doi: 10.1093/carcin/19.5.741. [DOI] [PubMed] [Google Scholar]
- Innis M. A., Myambo K. B., Gelfand D. H., Brow M. A. DNA sequencing with Thermus aquaticus DNA polymerase and direct sequencing of polymerase chain reaction-amplified DNA. Proc Natl Acad Sci U S A. 1988 Dec;85(24):9436–9440. doi: 10.1073/pnas.85.24.9436. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee-Chen S. F., Gurr J. R., Lin I. B., Jan K. Y. Arsenite enhances DNA double-strand breaks and cell killing of methyl methanesulfonate-treated cells by inhibiting the excision of alkali-labile sites. Mutat Res. 1993 Jun;294(1):21–28. doi: 10.1016/0921-8777(93)90054-k. [DOI] [PubMed] [Google Scholar]
- Lee T. C., Tanaka N., Lamb P. W., Gilmer T. M., Barrett J. C. Induction of gene amplification by arsenic. Science. 1988 Jul 1;241(4861):79–81. doi: 10.1126/science.3388020. [DOI] [PubMed] [Google Scholar]
- Lin S. R., Lee Y. J., Tsai J. H. Mutations of the p53 gene in human functional adrenal neoplasms. J Clin Endocrinol Metab. 1994 Feb;78(2):483–491. doi: 10.1210/jcem.78.2.8106638. [DOI] [PubMed] [Google Scholar]
- Lynn S., Shiung J. N., Gurr J. R., Jan K. Y. Arsenite stimulates poly(ADP-ribosylation) by generation of nitric oxide. Free Radic Biol Med. 1998 Feb;24(3):442–449. doi: 10.1016/s0891-5849(97)00279-7. [DOI] [PubMed] [Google Scholar]
- Lübbe J., Kleihues P., Burg G. Das Tumorsuppressor-Gen p53 und seine Bedeutung für die Dermatologie. Hautarzt. 1994 Nov;45(11):741–745. doi: 10.1007/s001050050163. [DOI] [PubMed] [Google Scholar]
- Magos L. Epidemiological and experimental aspects of metal carcinogenesis: physicochemical properties, kinetics, and the active species. Environ Health Perspect. 1991 Nov;95:157–189. doi: 10.1289/ehp.9195157. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsumura Y., Nishigori C., Yagi T., Imamura S., Takebe H. Characterization of p53 gene mutations in basal-cell carcinomas: comparison between sun-exposed and less-exposed skin areas. Int J Cancer. 1996 Mar 15;65(6):778–780. doi: 10.1002/(SICI)1097-0215(19960315)65:6<778::AID-IJC12>3.0.CO;2-0. [DOI] [PubMed] [Google Scholar]
- Nagano T., Ueda M., Ichihashi M. Expression of p53 protein is an early event in ultraviolet light-induced cutaneous squamous cell carcinogenesis. Arch Dermatol. 1993 Sep;129(9):1157–1161. [PubMed] [Google Scholar]
- Nakazawa H., English D., Randell P. L., Nakazawa K., Martel N., Armstrong B. K., Yamasaki H. UV and skin cancer: specific p53 gene mutation in normal skin as a biologically relevant exposure measurement. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):360–364. doi: 10.1073/pnas.91.1.360. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nataraj A. J., Black H. S., Ananthaswamy H. N. Signature p53 mutation at DNA cross-linking sites in 8-methoxypsoralen and ultraviolet A (PUVA)-induced murine skin cancers. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):7961–7965. doi: 10.1073/pnas.93.15.7961. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oram Y., Orengo I., Baer S. C., Ocal T. p53 Protein expression in squamous cell carcinomas from sun-exposed and non-sun-exposed sites. J Am Acad Dermatol. 1994 Sep;31(3 Pt 1):417–422. doi: 10.1016/s0190-9622(94)70203-9. [DOI] [PubMed] [Google Scholar]
- Pan T. C., Horng C. J., Lin S. R., Lin T. H., Huang C. W. Simultaneous determination of Zn, Cd, Pb, and Cu in urine of patients with blackfoot disease using anodic stripping voltammetry. Biol Trace Elem Res. 1993 Sep;38(3):233–241. doi: 10.1007/BF02785308. [DOI] [PubMed] [Google Scholar]
- Sato M., Nishigori C., Zghal M., Yagi T., Takebe H. Ultraviolet-specific mutations in p53 gene in skin tumors in xeroderma pigmentosum patients. Cancer Res. 1993 Jul 1;53(13):2944–2946. [PubMed] [Google Scholar]
- Shibata A., Ohneseit P. F., Tsai Y. C., Spruck C. H., 3rd, Nichols P. W., Chiang H. S., Lai M. K., Jones P. A. Mutational spectrum in the p53 gene in bladder tumors from the endemic area of black foot disease in Taiwan. Carcinogenesis. 1994 Jun;15(6):1085–1087. doi: 10.1093/carcin/15.6.1085. [DOI] [PubMed] [Google Scholar]
- Tseng C. H., Chong C. K., Chen C. J., Lin B. J., Tai T. Y. Abnormal peripheral microcirculation in seemingly normal subjects living in blackfoot-disease-hyperendemic villages in Taiwan. Int J Microcirc Clin Exp. 1995 Jan-Feb;15(1):21–27. doi: 10.1159/000178945. [DOI] [PubMed] [Google Scholar]
- Tseng W. P., Chu H. M., How S. W., Fong J. M., Lin C. S., Yeh S. Prevalence of skin cancer in an endemic area of chronic arsenicism in Taiwan. J Natl Cancer Inst. 1968 Mar;40(3):453–463. [PubMed] [Google Scholar]
- Weyers W., Bonczkowitz M., Weyers I., Bittinger A., Schill W. B. Melanoma in situ versus melanocytic hyperplasia in sun-damaged skin. Assessment of the significance of histopathologic criteria for differential diagnosis. Am J Dermatopathol. 1996 Dec;18(6):560–566. doi: 10.1097/00000372-199612000-00002. [DOI] [PubMed] [Google Scholar]
- Wu M. M., Kuo T. L., Hwang Y. H., Chen C. J. Dose-response relation between arsenic concentration in well water and mortality from cancers and vascular diseases. Am J Epidemiol. 1989 Dec;130(6):1123–1132. doi: 10.1093/oxfordjournals.aje.a115439. [DOI] [PubMed] [Google Scholar]
- Ziegler A., Jonason A. S., Leffell D. J., Simon J. A., Sharma H. W., Kimmelman J., Remington L., Jacks T., Brash D. E. Sunburn and p53 in the onset of skin cancer. Nature. 1994 Dec 22;372(6508):773–776. doi: 10.1038/372773a0. [DOI] [PubMed] [Google Scholar]
- Ziegler A., Leffell D. J., Kunala S., Sharma H. W., Gailani M., Simon J. A., Halperin A. J., Baden H. P., Shapiro P. E., Bale A. E. Mutation hotspots due to sunlight in the p53 gene of nonmelanoma skin cancers. Proc Natl Acad Sci U S A. 1993 May 1;90(9):4216–4220. doi: 10.1073/pnas.90.9.4216. [DOI] [PMC free article] [PubMed] [Google Scholar]
- van Kranen H. J., de Gruijl F. R., de Vries A., Sontag Y., Wester P. W., Senden H. C., Rozemuller E., van Kreijl C. F. Frequent p53 alterations but low incidence of ras mutations in UV-B-induced skin tumors of hairless mice. Carcinogenesis. 1995 May;16(5):1141–1147. doi: 10.1093/carcin/16.5.1141. [DOI] [PubMed] [Google Scholar]
- van Kranen H. J., de Laat A., van de Ven J., Wester P. W., de Vries A., Berg R. J., van Kreijl C. F., de Gruijl F. R. Low incidence of p53 mutations in UVA (365-nm)-induced skin tumors in hairless mice. Cancer Res. 1997 Apr 1;57(7):1238–1240. [PubMed] [Google Scholar]