Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Jun;80(7):940–945. doi: 10.1038/sj.bjc.6690447

Expression levels of the DNA repair enzyme HAP1 do not correlate with the radiosensitivities of human or HAP1-transfected rat cell lines

C J Herring 1,*, B Deans 1,, R H Elder 1, J A Rafferty 1, J MacKinnon 1, G Barzilay 2, I D Hickson 2, J H Hendry 1, GP Margison 1
PMCID: PMC2363057  PMID: 10362100

Abstract

Apurinic/apyrimidinic (AP) sites in DNA are potentially lethal and mutagenic. They can arise spontaneously or following DNA damage from reactive oxygen species or alkylating agents, and they constitute a significant product of DNA damage following cellular exposure to ionizing radiation. The major AP endonuclease responsible for initiating the repair of these and other DNA lesions in human cells is HAP1, which also possesses a redox function. We have determined the cellular levels of this enzyme in 11 human tumour and fibroblast cell lines in relation to clonogenic survival following ionizing radiation. Cellular HAP1 levels and surviving fraction at 2 Gy (SF2) varied five- and tenfold respectively. However, no correlation was found between these two parameters following exposure to γ-irradiation at low (1.1 cGy per min) or high (108 cGy per min) dose rates. To examine this further, wild-type and mutant versions of HAP1 were overexpressed, using an inducible HAP1 cDNA expression vector system, in the rat C6 glioma cell line which has low endogenous AP endonuclease activity. Induction of wild-type HAP1 expression caused a > fivefold increase in the capacity of cellular extracts to cleave an oligonucleotide substrate containing a single abasic site, but increased expression did not confer increased resistance to γ-irradiation at high- or low-dose rates, or to the methylating agent methyl methanesulphonate (MMS). Expression in C6 cell lines of mutant forms of HAP1 deleted for either the redox activator or DNA repair functions displayed no apparent titrational or dominant negative effects. These studies suggest that the levels of endogenous AP endonuclease activities in the various cell lines examined are not limiting for efficient repair in cells following exposure to ionizing radiation or MMS. This contrasts with the correlation we have found between HAP1 levels and radiosensitivity in cervix carcinomas (Herring et al (1998) Br J Cancer 78: 1128–1133), indicating that HAP1 levels in this case assume a critical survival role and hence that established cell lines might not be a suitable model for such studies. © 1999 Cancer Research Campaign

Keywords: ionizing radiation, apurinic sites, oxidative DNA damage, APEX, APE, Ref-1

Full Text

The Full Text of this article is available as a PDF (120.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barzilay G., Hickson I. D. Structure and function of apurinic/apyrimidinic endonucleases. Bioessays. 1995 Aug;17(8):713–719. doi: 10.1002/bies.950170808. [DOI] [PubMed] [Google Scholar]
  2. Barzilay G., Mol C. D., Robson C. N., Walker L. J., Cunningham R. P., Tainer J. A., Hickson I. D. Identification of critical active-site residues in the multifunctional human DNA repair enzyme HAP1. Nat Struct Biol. 1995 Jul;2(7):561–568. doi: 10.1038/nsb0795-561. [DOI] [PubMed] [Google Scholar]
  3. Barzilay G., Walker L. J., Robson C. N., Hickson I. D. Site-directed mutagenesis of the human DNA repair enzyme HAP1: identification of residues important for AP endonuclease and RNase H activity. Nucleic Acids Res. 1995 May 11;23(9):1544–1550. doi: 10.1093/nar/23.9.1544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Barzilay G., Walker L. J., Rothwell D. G., Hickson I. D. Role of the HAP1 protein in repair of oxidative DNA damage and regulation of transcription factors. Br J Cancer Suppl. 1996 Jul;27:S145–S150. [PMC free article] [PubMed] [Google Scholar]
  5. Chen D. S., Herman T., Demple B. Two distinct human DNA diesterases that hydrolyze 3'-blocking deoxyribose fragments from oxidized DNA. Nucleic Acids Res. 1991 Nov 11;19(21):5907–5914. doi: 10.1093/nar/19.21.5907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Chen D. S., Olkowski Z. L. Biological responses of human apurinic endonuclease to radiation-induced DNA damage. Ann N Y Acad Sci. 1994 Jul 29;726:306–308. doi: 10.1111/j.1749-6632.1994.tb52834.x. [DOI] [PubMed] [Google Scholar]
  7. Demple B., Harrison L. Repair of oxidative damage to DNA: enzymology and biology. Annu Rev Biochem. 1994;63:915–948. doi: 10.1146/annurev.bi.63.070194.004411. [DOI] [PubMed] [Google Scholar]
  8. Demple B., Herman T., Chen D. S. Cloning and expression of APE, the cDNA encoding the major human apurinic endonuclease: definition of a family of DNA repair enzymes. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11450–11454. doi: 10.1073/pnas.88.24.11450. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Demple B., Johnson A., Fung D. Exonuclease III and endonuclease IV remove 3' blocks from DNA synthesis primers in H2O2-damaged Escherichia coli. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7731–7735. doi: 10.1073/pnas.83.20.7731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Doetsch P. W., Cunningham R. P. The enzymology of apurinic/apyrimidinic endonucleases. Mutat Res. 1990 Sep-Nov;236(2-3):173–201. doi: 10.1016/0921-8777(90)90004-o. [DOI] [PubMed] [Google Scholar]
  11. Harrison L., Skorvaga M., Cunningham R. P., Hendry J. H., Margison G. P. Transfection of the Escherichia coli nth gene into radiosensitive Chinese hamster cells: effects on sensitivity to radiation, hydrogen peroxide, and bleomycin sulfate. Radiat Res. 1992 Oct;132(1):30–39. [PubMed] [Google Scholar]
  12. Henner W. D., Grunberg S. M., Haseltine W. A. Enzyme action at 3' termini of ionizing radiation-induced DNA strand breaks. J Biol Chem. 1983 Dec 25;258(24):15198–15205. [PubMed] [Google Scholar]
  13. Herring C. J., West C. M., Wilks D. P., Davidson S. E., Hunter R. D., Berry P., Forster G., MacKinnon J., Rafferty J. A., Elder R. H. Levels of the DNA repair enzyme human apurinic/apyrimidinic endonuclease (APE1, APEX, Ref-1) are associated with the intrinsic radiosensitivity of cervical cancers. Br J Cancer. 1998 Nov;78(9):1128–1133. doi: 10.1038/bjc.1998.641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Jayaraman L., Murthy K. G., Zhu C., Curran T., Xanthoudakis S., Prives C. Identification of redox/repair protein Ref-1 as a potent activator of p53. Genes Dev. 1997 Mar 1;11(5):558–570. doi: 10.1101/gad.11.5.558. [DOI] [PubMed] [Google Scholar]
  15. La Belle M., Linn S. DNA repair in cultured mouse cells of increasing population doubling level. Mutat Res. 1984 Jul-Aug;132(1-2):51–61. doi: 10.1016/0167-8817(84)90066-x. [DOI] [PubMed] [Google Scholar]
  16. Lindahl T., Andersson A. Rate of chain breakage at apurinic sites in double-stranded deoxyribonucleic acid. Biochemistry. 1972 Sep 12;11(19):3618–3623. doi: 10.1021/bi00769a019. [DOI] [PubMed] [Google Scholar]
  17. Lindahl T. Repair of intrinsic DNA lesions. Mutat Res. 1990 May;238(3):305–311. doi: 10.1016/0165-1110(90)90022-4. [DOI] [PubMed] [Google Scholar]
  18. Loeb L. A., Preston B. D. Mutagenesis by apurinic/apyrimidinic sites. Annu Rev Genet. 1986;20:201–230. doi: 10.1146/annurev.ge.20.120186.001221. [DOI] [PubMed] [Google Scholar]
  19. Ono Y., Furuta T., Ohmoto T., Akiyama K., Seki S. Stable expression in rat glioma cells of sense and antisense nucleic acids to a human multifunctional DNA repair enzyme, APEX nuclease. Mutat Res. 1994 Jul;315(1):55–63. doi: 10.1016/0921-8777(94)90028-0. [DOI] [PubMed] [Google Scholar]
  20. Ono Y., Matsumoto K., Furuta T., Ohmoto T., Akiyama K., Seki S. Relationship between expression of a major apurinic/apyrimidinic endonuclease (APEX nuclease) and susceptibility to genotoxic agents in human glioma cell lines. J Neurooncol. 1995;25(3):183–192. doi: 10.1007/BF01053151. [DOI] [PubMed] [Google Scholar]
  21. Roberts S. A. DRFIT: a program for fitting radiation survival models. Int J Radiat Biol. 1990 Jun;57(6):1243–1246. doi: 10.1080/09553009014551321. [DOI] [PubMed] [Google Scholar]
  22. Robson C. N., Hickson I. D. Isolation of cDNA clones encoding a human apurinic/apyrimidinic endonuclease that corrects DNA repair and mutagenesis defects in E. coli xth (exonuclease III) mutants. Nucleic Acids Res. 1991 Oct 25;19(20):5519–5523. doi: 10.1093/nar/19.20.5519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rothwell D. G., Barzilay G., Gorman M., Morera S., Freemont P., Hickson I. D. The structure and functions of the HAP1/Ref-1 protein. Oncol Res. 1997;9(6-7):275–280. [PubMed] [Google Scholar]
  24. Rothwell D. G., Hickson I. D. Asparagine 212 is essential for abasic site recognition by the human DNA repair endonuclease HAP1. Nucleic Acids Res. 1996 Nov 1;24(21):4217–4221. doi: 10.1093/nar/24.21.4217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Seki S., Ikeda S., Watanabe S., Hatsushika M., Tsutsui K., Akiyama K., Zhang B. A mouse DNA repair enzyme (APEX nuclease) having exonuclease and apurinic/apyrimidinic endonuclease activities: purification and characterization. Biochim Biophys Acta. 1991 Aug 9;1079(1):57–64. doi: 10.1016/0167-4838(91)90024-t. [DOI] [PubMed] [Google Scholar]
  26. Téoule R. Radiation-induced DNA damage and its repair. Int J Radiat Biol Relat Stud Phys Chem Med. 1987 Apr;51(4):573–589. doi: 10.1080/09553008414552111. [DOI] [PubMed] [Google Scholar]
  27. Walker L. J., Craig R. B., Harris A. L., Hickson I. D. A role for the human DNA repair enzyme HAP1 in cellular protection against DNA damaging agents and hypoxic stress. Nucleic Acids Res. 1994 Nov 25;22(23):4884–4889. doi: 10.1093/nar/22.23.4884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Walker L. J., Robson C. N., Black E., Gillespie D., Hickson I. D. Identification of residues in the human DNA repair enzyme HAP1 (Ref-1) that are essential for redox regulation of Jun DNA binding. Mol Cell Biol. 1993 Sep;13(9):5370–5376. doi: 10.1128/mcb.13.9.5370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Winters T. A., Henner W. D., Russell P. S., McCullough A., Jorgensen T. J. Removal of 3'-phosphoglycolate from DNA strand-break damage in an oligonucleotide substrate by recombinant human apurinic/apyrimidinic endonuclease 1. Nucleic Acids Res. 1994 May 25;22(10):1866–1873. doi: 10.1093/nar/22.10.1866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Xanthoudakis S., Curran T. Identification and characterization of Ref-1, a nuclear protein that facilitates AP-1 DNA-binding activity. EMBO J. 1992 Feb;11(2):653–665. doi: 10.1002/j.1460-2075.1992.tb05097.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Xanthoudakis S., Miao G. G., Curran T. The redox and DNA-repair activities of Ref-1 are encoded by nonoverlapping domains. Proc Natl Acad Sci U S A. 1994 Jan 4;91(1):23–27. doi: 10.1073/pnas.91.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Xanthoudakis S., Miao G., Wang F., Pan Y. C., Curran T. Redox activation of Fos-Jun DNA binding activity is mediated by a DNA repair enzyme. EMBO J. 1992 Sep;11(9):3323–3335. doi: 10.1002/j.1460-2075.1992.tb05411.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Yarnold J. Molecular aspects of cellular responses to radiotherapy. Radiother Oncol. 1997 Jul;44(1):1–7. doi: 10.1016/s0167-8140(97)00049-2. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES