Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Jul;80(9):1332–1341. doi: 10.1038/sj.bjc.6690526

A human breast cancer model for the study of telomerase inhibitors based on a new biotinylated-primer extension assay

E Raymond 1, D Sun 1, E Izbicka 1, G Mangold 1, E Silvas 1, B Windle 1, S Sharma 1, H Soda 1, R Laurence 1, K Davidson 1, D D Von Hoff 1
PMCID: PMC2363066  PMID: 10424733

Abstract

Telomerase is an RNA-dependent polymerase that synthesizes telomeric DNA (TTAGGG)n repeats. The overall goal of our work was to establish human cancer models that can be used to design clinical trials with telomerase inhibitors. The objectives of this study were (1) to set up a human breast cancer system that allows evaluation of the effects of telomerase inhibitors in cultured cells using a non-amplified telomerase assay and (2) to test this system using two drugs (cisplatin and TMPyP4) that affect the telomerase expression in breast cancer cells in culture. We first compared the telomerase activity in a variety of human breast cancer cell lines to that of other tumour types using a new biotinylated-primer extension assay. Our method, based on a non-amplified primer extension assay shows the direct incorporation of 32P-labelled nucleotides induced by telomerase on human telomeric primers. The 32P-dGTP labelled telomerase-extended 5′-biotinylated (TTAGGG)3 primer can subsequently be separated using streptavidin-coated magnetic beads. As compared to other non-amplified method, we showed that this procedure improved the characterization and the quantification of the banding pattern resulting from telomerase extension by reducing the radioactive background. Using this method, we observed that telomerase activity varies markedly in a panel of 39 human cancer cell lines. For example, MCF7 breast cancer cells in culture showed intermediate telomerase activity corresponding to 33.8 ± 3.4% of that of the HeLa cells (reference cell line). Similarly, the telomere length varied with each cell line (average: 6.24 ± 6.16). No correlation between the level of telomerase and telomere length was observed, suggesting that a high processivity is not required to maintain telomeres and that, in some cell lines, another mechanism of telomere elongation can maintain telomere length. From this study, we selected MCF7 and MX1 models that showed reproducible telomerase activity and a relatively limited telomere length for the testing of potential telomere–telomerase interacting agents. Using cisplatin and a new porphyrin-derived compound TMPyP4, we showed that our model was able to detect a down-regulation of the telomerase activity in MCF7 cells in culture and in a human MX1 tumour xenografts. Based on these results, a breast cancer model for evaluating telomerase and telomere interactive agents is proposed. © 1999 Cancer Research Campaign

Keywords: new telomerase assay, chemotherapy, telomerase inhibitors, telomere length, porphyrin, cisplatin

Full Text

The Full Text of this article is available as a PDF (305.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allsopp R. C., Harley C. B. Evidence for a critical telomere length in senescent human fibroblasts. Exp Cell Res. 1995 Jul;219(1):130–136. doi: 10.1006/excr.1995.1213. [DOI] [PubMed] [Google Scholar]
  2. Bednarek A. K., Sahin A., Brenner A. J., Johnston D. A., Aldaz C. M. Analysis of telomerase activity levels in breast cancer: positive detection at the in situ breast carcinoma stage. Clin Cancer Res. 1997 Jan;3(1):11–16. [PubMed] [Google Scholar]
  3. Blackburn E. H. Structure and function of telomeres. Nature. 1991 Apr 18;350(6319):569–573. doi: 10.1038/350569a0. [DOI] [PubMed] [Google Scholar]
  4. Bryan T. M., Englezou A., Gupta J., Bacchetti S., Reddel R. R. Telomere elongation in immortal human cells without detectable telomerase activity. EMBO J. 1995 Sep 1;14(17):4240–4248. doi: 10.1002/j.1460-2075.1995.tb00098.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burger A. M., Double J. A., Newell D. R. Inhibition of telomerase activity by cisplatin in human testicular cancer cells. Eur J Cancer. 1997 Apr;33(4):638–644. doi: 10.1016/s0959-8049(96)00521-7. [DOI] [PubMed] [Google Scholar]
  6. Chadeneau C., Siegel P., Harley C. B., Muller W. J., Bacchetti S. Telomerase activity in normal and malignant murine tissues. Oncogene. 1995 Sep 7;11(5):893–898. [PubMed] [Google Scholar]
  7. Faraoni I., Turriziani M., Masci G., De Vecchis L., Shay J. W., Bonmassar E., Graziani G. Decline in telomerase activity as a measure of tumor cell killing by antineoplastic agents in vitro. Clin Cancer Res. 1997 Apr;3(4):579–585. [PubMed] [Google Scholar]
  8. Fisher B. Personal contributions to progress in breast cancer research and treatment. Semin Oncol. 1996 Aug;23(4):414–427. [PubMed] [Google Scholar]
  9. Gilley D., Blackburn E. H. Lack of telomere shortening during senescence in Paramecium. Proc Natl Acad Sci U S A. 1994 Mar 1;91(5):1955–1958. doi: 10.1073/pnas.91.5.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Greider C. W. Mammalian telomere dynamics: healing, fragmentation shortening and stabilization. Curr Opin Genet Dev. 1994 Apr;4(2):203–211. doi: 10.1016/s0959-437x(05)80046-2. [DOI] [PubMed] [Google Scholar]
  11. Greider C. W. Telomerase and telomere-length regulation: lessons from small eukaryotes to mammals. Cold Spring Harb Symp Quant Biol. 1993;58:719–723. doi: 10.1101/sqb.1993.058.01.079. [DOI] [PubMed] [Google Scholar]
  12. Harley C. B., Kim N. W., Prowse K. R., Weinrich S. L., Hirsch K. S., West M. D., Bacchetti S., Hirte H. W., Counter C. M., Greider C. W. Telomerase, cell immortality, and cancer. Cold Spring Harb Symp Quant Biol. 1994;59:307–315. doi: 10.1101/sqb.1994.059.01.035. [DOI] [PubMed] [Google Scholar]
  13. Harley C. B., Vaziri H., Counter C. M., Allsopp R. C. The telomere hypothesis of cellular aging. Exp Gerontol. 1992 Jul-Aug;27(4):375–382. doi: 10.1016/0531-5565(92)90068-b. [DOI] [PubMed] [Google Scholar]
  14. Harley C. B., Villeponteau B. Telomeres and telomerase in aging and cancer. Curr Opin Genet Dev. 1995 Apr;5(2):249–255. doi: 10.1016/0959-437x(95)80016-6. [DOI] [PubMed] [Google Scholar]
  15. Harrington L., McPhail T., Mar V., Zhou W., Oulton R., Bass M. B., Arruda I., Robinson M. O. A mammalian telomerase-associated protein. Science. 1997 Feb 14;275(5302):973–977. doi: 10.1126/science.275.5302.973. [DOI] [PubMed] [Google Scholar]
  16. Healy K. C. Telomere dynamics and telomerase activation in tumor progression: prospects for prognosis and therapy. Oncol Res. 1995;7(3-4):121–130. [PubMed] [Google Scholar]
  17. Hiyama E., Gollahon L., Kataoka T., Kuroi K., Yokoyama T., Gazdar A. F., Hiyama K., Piatyszek M. A., Shay J. W. Telomerase activity in human breast tumors. J Natl Cancer Inst. 1996 Jan 17;88(2):116–122. doi: 10.1093/jnci/88.2.116. [DOI] [PubMed] [Google Scholar]
  18. Ishibashi T., Lippard S. J. Telomere loss in cells treated with cisplatin. Proc Natl Acad Sci U S A. 1998 Apr 14;95(8):4219–4223. doi: 10.1073/pnas.95.8.4219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Izbicka E., Wheelhouse R. T., Raymond E., Davidson K. K., Lawrence R. A., Sun D., Windle B. E., Hurley L. H., Von Hoff D. D. Effects of cationic porphyrins as G-quadruplex interactive agents in human tumor cells. Cancer Res. 1999 Feb 1;59(3):639–644. [PubMed] [Google Scholar]
  20. Kim N. W., Piatyszek M. A., Prowse K. R., Harley C. B., West M. D., Ho P. L., Coviello G. M., Wright W. E., Weinrich S. L., Shay J. W. Specific association of human telomerase activity with immortal cells and cancer. Science. 1994 Dec 23;266(5193):2011–2015. doi: 10.1126/science.7605428. [DOI] [PubMed] [Google Scholar]
  21. Levy M. Z., Allsopp R. C., Futcher A. B., Greider C. W., Harley C. B. Telomere end-replication problem and cell aging. J Mol Biol. 1992 Jun 20;225(4):951–960. doi: 10.1016/0022-2836(92)90096-3. [DOI] [PubMed] [Google Scholar]
  22. Marcand S., Gilson E., Shore D. A protein-counting mechanism for telomere length regulation in yeast. Science. 1997 Feb 14;275(5302):986–990. doi: 10.1126/science.275.5302.986. [DOI] [PubMed] [Google Scholar]
  23. Piccart M. J., Raymond E., Aapro M., Eisenhauer E. A., Cvitkovic E. Cytotoxic agents with activity in breast cancer patients previously exposed to anthracyclines: current status and future prospects. Eur J Cancer. 1995;31A Suppl 7:S1–10. doi: 10.1016/0959-8049(95)00266-l. [DOI] [PubMed] [Google Scholar]
  24. Price C. M. Telomere structure and function. Indian J Biochem Biophys. 1993 Apr;30(2):77–82. [PubMed] [Google Scholar]
  25. Prowse K. R., Avilion A. A., Greider C. W. Identification of a nonprocessive telomerase activity from mouse cells. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1493–1497. doi: 10.1073/pnas.90.4.1493. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Prowse K. R., Greider C. W. Developmental and tissue-specific regulation of mouse telomerase and telomere length. Proc Natl Acad Sci U S A. 1995 May 23;92(11):4818–4822. doi: 10.1073/pnas.92.11.4818. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Raymond E., Sun D., Chen S. F., Windle B., Von Hoff D. D. Agents that target telomerase and telomeres. Curr Opin Biotechnol. 1996 Dec;7(6):583–591. doi: 10.1016/s0958-1669(96)80068-1. [DOI] [PubMed] [Google Scholar]
  28. Sharma S., Raymond E., Soda H., Sun D., Hilsenbeck S. G., Sharma A., Izbicka E., Windle B., Von Hoff D. D. Preclinical and clinical strategies for development of telomerase and telomere inhibitors. Ann Oncol. 1997 Nov;8(11):1063–1074. doi: 10.1023/a:1008206420505. [DOI] [PubMed] [Google Scholar]
  29. Shay J. W., Tomlinson G., Piatyszek M. A., Gollahon L. S. Spontaneous in vitro immortalization of breast epithelial cells from a patient with Li-Fraumeni syndrome. Mol Cell Biol. 1995 Jan;15(1):425–432. doi: 10.1128/mcb.15.1.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Shay J. W., Van Der Haegen B. A., Ying Y., Wright W. E. The frequency of immortalization of human fibroblasts and mammary epithelial cells transfected with SV40 large T-antigen. Exp Cell Res. 1993 Nov;209(1):45–52. doi: 10.1006/excr.1993.1283. [DOI] [PubMed] [Google Scholar]
  31. Shay J. W., Wright W. E., Werbin H. Toward a molecular understanding of human breast cancer: a hypothesis. Breast Cancer Res Treat. 1993;25(1):83–94. doi: 10.1007/BF00662404. [DOI] [PubMed] [Google Scholar]
  32. Sun D., Thompson B., Cathers B. E., Salazar M., Kerwin S. M., Trent J. O., Jenkins T. C., Neidle S., Hurley L. H. Inhibition of human telomerase by a G-quadruplex-interactive compound. J Med Chem. 1997 Jul 4;40(14):2113–2116. doi: 10.1021/jm970199z. [DOI] [PubMed] [Google Scholar]
  33. Tsao J. l., Zhao Y., Lukas J., Yang X., Shah A., Press M., Shibata D. Telomerase activity in normal and neoplastic breast. Clin Cancer Res. 1997 Apr;3(4):627–631. [PubMed] [Google Scholar]
  34. Vojta P. J., Barrett J. C. Genetic analysis of cellular senescence. Biochim Biophys Acta. 1995 Jul 28;1242(1):29–41. doi: 10.1016/0304-419x(95)00002-w. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES