Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Jul;80(9):1461–1469. doi: 10.1038/sj.bjc.6690545

Childhood exposure due to the Chernobyl accident and thyroid cancer risk in contaminated areas of Belarus and Russia

P Jacob 1, Y Kenigsberg 2, I Zvonova 3, G Goulko 1, E Buglova 2, W F Heidenreich 1, A Golovneva 2, A A Bratilova 3, V Drozdovitch 2,1, J Kruk 2, G T Pochtennaja 5, M Balonov 3, E P Demidchik 4, H G Paretzke 1
PMCID: PMC2363070  PMID: 10424752

Abstract

The thyroid dose due to 131I releases during the Chernobyl accident was reconstructed for children and adolescents in two cities and 2122 settlements in Belarus, and in one city and 607 settlements in the Bryansk district of the Russian Federation. In this area, which covers the two high contamination spots in the two countries following the accident, data on thyroid cancer incidence during the period 1991–1995 were analysed in the light of possible increased thyroid surveillance. Two methods of risk analysis were applied: Poisson regression with results for the single settlements and Monte Carlo (MC) calculations for results in larger areas or sub-populations. Best estimates of both methods agreed well. Poisson regression estimates of 95% confidence intervals (CIs) were considerably smaller than the MC results, which allow for extra-Poisson uncertainties due to reconstructed doses and the background thyroid cancer incidence. The excess absolute risk per unit thyroid dose (EARPD) for the birth cohort 1971–1985 by the MC analysis was 2.1 (95% CI 1.0–4.5) cases per 104 person-year Gy. The point estimate is lower by a factor of two than that observed in a pooled study of thyroid cancer risk after external exposures. The excess relative risk per unit thyroid dose was 23 (95% CI 8.6–82) Gy−1. No significant differences between countries or cities and rural areas were found. In the lowest dose group of the settlements with an average thyroid dose of 0.05 Gy the risk was statistically significantly elevated. Dependencies of risks on age-at-exposure and on gender are consistent with findings after external exposures. © 1999 Cancer Research Campaign

Keywords: Chernobyl, dose reconstruction, iodine-131, radiation risk, thyroid cancer

Full Text

The Full Text of this article is available as a PDF (238.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Astakhova L. N., Anspaugh L. R., Beebe G. W., Bouville A., Drozdovitch V. V., Garber V., Gavrilin Y. I., Khrouch V. T., Kuvshinnikov A. V., Kuzmenkov Y. N. Chernobyl-related thyroid cancer in children of Belarus: a case-control study. Radiat Res. 1998 Sep;150(3):349–356. [PubMed] [Google Scholar]
  2. Beral V., Reeves G. Childhood thyroid cancer in Belarus. Nature. 1992 Oct 22;359(6397):680–681. doi: 10.1038/359680b0. [DOI] [PubMed] [Google Scholar]
  3. Buglova E. E., Kenigsberg J. E., Sergeeva N. V. Cancer risk estimation in Belarussian children due to thyroid irradiation as a consequence of the Chernobyl nuclear accident. Health Phys. 1996 Jul;71(1):45–49. doi: 10.1097/00004032-199607000-00007. [DOI] [PubMed] [Google Scholar]
  4. Drozdovitch V. V., Goulko G. M., Minenko V. F., Paretzke H. G., Voigt G., Kenigsberg YaI Thyroid dose reconstruction for the population of Belarus after the Chernobyl accident. Radiat Environ Biophys. 1997 Feb;36(1):17–23. doi: 10.1007/s004110050050. [DOI] [PubMed] [Google Scholar]
  5. Franssila K. O., Harach H. R. Occult papillary carcinoma of the thyroid in children and young adults. A systemic autopsy study in Finland. Cancer. 1986 Aug 1;58(3):715–719. doi: 10.1002/1097-0142(19860801)58:3<715::aid-cncr2820580319>3.0.co;2-p. [DOI] [PubMed] [Google Scholar]
  6. Gavrilin Iu I., Gordeev K. I., Ivanov V. K., Il'in L. A., Kondrusev A. I., Margulis U. Ia, Stepanenko V. F., Khrushch V. T., Shinkarev S. M. Osobennosti i rezul'taty opredeleniia doz vnutrennego oblucheniia shchitovidnoi zhelezy dlia naseleniia zagriaznennykh raionov Respubliki Belarus'. Vestn Akad Med Nauk SSSR. 1992;(2):35–43. [PubMed] [Google Scholar]
  7. Goulko G. M., Chepurny N. I., Jacob P., Kairo I. A., Likhtarev I. A., Pröhl G., Sobolev B. G. Thyroid dose and thyroid cancer incidence after the Chernobyl accident: assessments for the Zhytomyr region (Ukraine). Radiat Environ Biophys. 1998 Feb;36(4):261–273. doi: 10.1007/s004110050081. [DOI] [PubMed] [Google Scholar]
  8. Greenland S., Robins J. Invited commentary: ecologic studies--biases, misconceptions, and counterexamples. Am J Epidemiol. 1994 Apr 15;139(8):747–760. doi: 10.1093/oxfordjournals.aje.a117069. [DOI] [PubMed] [Google Scholar]
  9. Hall P., Mattsson A., Boice J. D., Jr Thyroid cancer after diagnostic administration of iodine-131. Radiat Res. 1996 Jan;145(1):86–92. [PubMed] [Google Scholar]
  10. Heidenreich W. F., Kenigsberg J., Jacob P., Buglova E., Goulko G., Paretzke H. G., Demidchik E. P., Golovneva A. Time trends of thyroid cancer incidence in Belarus after the Chernobyl accident. Radiat Res. 1999 May;151(5):617–625. [PubMed] [Google Scholar]
  11. Ivanov V. K., Tsyb A. F., Gorsky A. I., Maksyutov M. A., Rastopchin E. M., Konogorov A. P., Korelo A. M., Biryukov A. P., Matyash V. A. Leukaemia and thyroid cancer in emergency workers of the Chernobyl accident: estimation of radiation risks (1986-1995). Radiat Environ Biophys. 1997 Feb;36(1):9–16. doi: 10.1007/s004110050049. [DOI] [PubMed] [Google Scholar]
  12. Jacob P., Goulko G., Heidenreich W. F., Likhtarev I., Kairo I., Tronko N. D., Bogdanova T. I., Kenigsberg J., Buglova E., Drozdovitch V. Thyroid cancer risk to children calculated. Nature. 1998 Mar 5;392(6671):31–32. doi: 10.1038/32076. [DOI] [PubMed] [Google Scholar]
  13. Kazakov V. S., Demidchik E. P., Astakhova L. N. Thyroid cancer after Chernobyl. Nature. 1992 Sep 3;359(6390):21–21. doi: 10.1038/359021a0. [DOI] [PubMed] [Google Scholar]
  14. Kerber R. A., Till J. E., Simon S. L., Lyon J. L., Thomas D. C., Preston-Martin S., Rallison M. L., Lloyd R. D., Stevens W. A cohort study of thyroid disease in relation to fallout from nuclear weapons testing. JAMA. 1993 Nov 3;270(17):2076–2082. [PubMed] [Google Scholar]
  15. Likhtarev I. A., Sobolev B. G., Kairo I. A., Tronko N. D., Bogdanova T. I., Oleinic V. A., Epshtein E. V., Beral V. Thyroid cancer in the Ukraine. Nature. 1995 Jun 1;375(6530):365–365. doi: 10.1038/375365a0. [DOI] [PubMed] [Google Scholar]
  16. Pierce D. A., Stram D. O., Vaeth M. Allowing for random errors in radiation dose estimates for the atomic bomb survivor data. Radiat Res. 1990 Sep;123(3):275–284. [PubMed] [Google Scholar]
  17. Ron E., Lubin J. H., Shore R. E., Mabuchi K., Modan B., Pottern L. M., Schneider A. B., Tucker M. A., Boice J. D., Jr Thyroid cancer after exposure to external radiation: a pooled analysis of seven studies. Radiat Res. 1995 Mar;141(3):259–277. [PubMed] [Google Scholar]
  18. Ron E., Lubin J., Schneider A. B. Thyroid cancer incidence. Nature. 1992 Nov 12;360(6400):113–113. doi: 10.1038/360113a0. [DOI] [PubMed] [Google Scholar]
  19. Sheppard L., Prentice R. L., Rossing M. A. Design considerations for estimation of exposure effects on disease risk, using aggregate data studies. Stat Med. 1996 Sep 15;15(17-18):1849–1858. doi: 10.1002/(SICI)1097-0258(19960915)15:17<1849::AID-SIM396>3.0.CO;2-4. [DOI] [PubMed] [Google Scholar]
  20. Sobolev B., Heidenreich W. F., Kairo I., Jacob P., Goulko G., Likhtarev I. Thyroid cancer incidence in the Ukraine after the Chernobyl accident: comparison with spontaneous incidences. Radiat Environ Biophys. 1997 Sep;36(3):195–199. doi: 10.1007/s004110050071. [DOI] [PubMed] [Google Scholar]
  21. Stsjazhko V. A., Tsyb A. F., Tronko N. D., Souchkevitch G., Baverstock K. F. Childhood thyroid cancer since accident at Chernobyl. BMJ. 1995 Mar 25;310(6982):801–801. doi: 10.1136/bmj.310.6982.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Thomas D., Stram D., Dwyer J. Exposure measurement error: influence on exposure-disease. Relationships and methods of correction. Annu Rev Public Health. 1993;14:69–93. doi: 10.1146/annurev.pu.14.050193.000441. [DOI] [PubMed] [Google Scholar]
  23. Thompson D. E., Mabuchi K., Ron E., Soda M., Tokunaga M., Ochikubo S., Sugimoto S., Ikeda T., Terasaki M., Izumi S. Cancer incidence in atomic bomb survivors. Part II: Solid tumors, 1958-1987. Radiat Res. 1994 Feb;137(2 Suppl):S17–S67. [PubMed] [Google Scholar]
  24. Ulanovsky A. V., Minenko V. F., Korneev S. V. Influence of measurement geometry on the estimate of 131(I) activity in the thyroid: Monte Carlo simulation of a detector and a phantom. Health Phys. 1997 Jan;72(1):34–41. doi: 10.1097/00004032-199701000-00004. [DOI] [PubMed] [Google Scholar]
  25. Williams D. Epidemiology. Chernobyl, eight years on. Nature. 1994 Oct 13;371(6498):556–556. doi: 10.1038/371556a0. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES