Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Jul;80(10):1525–1532. doi: 10.1038/sj.bjc.6690556

Comparative effect of ALA derivatives on protoporphyrin IX production in human and rat skin organ cultures

A Casas 1, A M del C Batlle 1, A R Butler 2, D Robertson 2, E H Brown 2, A MacRobert 3, P A Riley 4
PMCID: PMC2363110  PMID: 10408393

Abstract

Samples of human and rat skin in short-term organ culture exposed to ALA or a range of hydrophobic derivatives were examined for their effect on the accumulation of protoporphyrin IX (PpIX) measured using fluorescence spectroscopy. With the exception of carbobenzoyloxy-D-phenylalanyl-5-ALA-ethyl ester the data presented indicate that, in normal tissues, ALA derivatives generate protoporphyrin IX more slowly than ALA, suggesting that they are less rapidly taken up and/or converted to free ALA. However, the resultant depot effect may lead to the enhanced accumulation of porphyrin over long exposure periods, particularly in the case of ALA-methyl ester or ALA-hexyl ester, depending on the applied concentration and the exposed tissue. Addition of the iron chelator, CP94, greatly increased PpIX accumulation in human skin exposed to ALA, ALA-methyl ester and ALA-hexyl ester. The effect in rat skin was less marked. © 1999 Cancer Research Campaign

Keywords: ALA, PDT, ALA derivatives, ALA esters, iron chelators, CP94

Full Text

The Full Text of this article is available as a PDF (280.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bech O., Phillips D., Moan J., MacRobert A. J. A hydroxypyridinone (CP94) enhances protoporphyrin IX formation in 5-aminolaevulinic acid treated cells. J Photochem Photobiol B. 1997 Nov;41(1-2):136–144. doi: 10.1016/s1011-1344(97)00095-x. [DOI] [PubMed] [Google Scholar]
  2. Bedwell J., MacRobert A. J., Phillips D., Bown S. G. Fluorescence distribution and photodynamic effect of ALA-induced PP IX in the DMH rat colonic tumour model. Br J Cancer. 1992 Jun;65(6):818–824. doi: 10.1038/bjc.1992.175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berg K., Anholt H., Bech O., Moan J. The influence of iron chelators on the accumulation of protoporphyrin IX in 5-aminolaevulinic acid-treated cells. Br J Cancer. 1996 Sep;74(5):688–697. doi: 10.1038/bjc.1996.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bermúdez Moretti M., Correa García S. R., Chianelli M. S., Ramos E. H., Mattoon J. R., Batlle A. Evidence that 4-aminobutyric acid and 5-aminolevulinic acid share a common transport system into Saccharomyces cerevisiae. Int J Biochem Cell Biol. 1995 Feb;27(2):169–173. doi: 10.1016/1357-2725(95)00002-7. [DOI] [PubMed] [Google Scholar]
  5. Chang S. C., MacRobert A. J., Porter J. B., Bown S. G. The efficacy of an iron chelator (CP94) in increasing cellular protoporphyrin IX following intravesical 5-aminolaevulinic acid administration: an in vivo study. J Photochem Photobiol B. 1997 Apr;38(2-3):114–122. doi: 10.1016/s1011-1344(96)07441-6. [DOI] [PubMed] [Google Scholar]
  6. Curnow A., McIlroy B. W., Postle-Hacon M. J., Porter J. B., MacRobert A. J., Bown S. G. Enhancement of 5-aminolaevulinic acid-induced photodynamic therapy in normal rat colon using hydroxypyridinone iron-chelating agents. Br J Cancer. 1998 Nov;78(10):1278–1282. doi: 10.1038/bjc.1998.671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dietel W., Bolsen K., Dickson E., Fritsch C., Pottier R., Wendenburg R. Formation of water-soluble porphyrins and protoporphyrin IX in 5-aminolevulinic-acid-incubated carcinoma cells. J Photochem Photobiol B. 1996 May;33(3):225–231. doi: 10.1016/1011-1344(95)07249-7. [DOI] [PubMed] [Google Scholar]
  8. Fritsch C., Batz J., Bolsen K., Schulte K. W., Zumdick M., Ruzicka T., Goerz G. Ex vivo application of delta-aminolevulinic acid induces high and specific porphyrin levels in human skin tumors: possible basis for selective photodynamic therapy. Photochem Photobiol. 1997 Jul;66(1):114–118. doi: 10.1111/j.1751-1097.1997.tb03146.x. [DOI] [PubMed] [Google Scholar]
  9. Fukuda H., Paredes S., Batlle A. M. Tumor-localizing properties of porphyrins. In vitro studies using the porphyrin precursor, aminolevulinic acid, in free and liposome encapsulated forms. Drug Des Deliv. 1989 Dec;5(2):133–139. [PubMed] [Google Scholar]
  10. Fukuda H., Paredes S., Batlle A. M. Tumour-localizing properties of porphyrins. In vivo studies using free and liposome encapsulated aminolevulinic acid. Comp Biochem Physiol B. 1992 Jun;102(2):433–436. doi: 10.1016/0305-0491(92)90147-j. [DOI] [PubMed] [Google Scholar]
  11. García S. C., Moretti M. B., Garay M. V., Batlle A. Delta-aminolevulinic acid transport through blood-brain barrier. Gen Pharmacol. 1998 Oct;31(4):579–582. doi: 10.1016/s0306-3623(98)00038-x. [DOI] [PubMed] [Google Scholar]
  12. Gaullier J. M., Berg K., Peng Q., Anholt H., Selbo P. K., Ma L. W., Moan J. Use of 5-aminolevulinic acid esters to improve photodynamic therapy on cells in culture. Cancer Res. 1997 Apr 15;57(8):1481–1486. [PubMed] [Google Scholar]
  13. Hanania J., Malik Z. The effect of EDTA and serum on endogenous porphyrin accumulation and photodynamic sensitization of human K562 leukemic cells. Cancer Lett. 1992 Aug 14;65(2):127–131. doi: 10.1016/0304-3835(92)90156-p. [DOI] [PubMed] [Google Scholar]
  14. Iinuma S., Farshi S. S., Ortel B., Hasan T. A mechanistic study of cellular photodestruction with 5-aminolaevulinic acid-induced porphyrin. Br J Cancer. 1994 Jul;70(1):21–28. doi: 10.1038/bjc.1994.244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kloek J., Akkermans W., Beijersbergen van Henegouwen G. M. Derivatives of 5-aminolevulinic acid for photodynamic therapy: enzymatic conversion into protoporphyrin. Photochem Photobiol. 1998 Jan;67(1):150–154. [PubMed] [Google Scholar]
  16. Kloek J., Beijersbergen van Henegouwen Prodrugs of 5-aminolevulinic acid for photodynamic therapy. Photochem Photobiol. 1996 Dec;64(6):994–1000. doi: 10.1111/j.1751-1097.1996.tb01868.x. [DOI] [PubMed] [Google Scholar]
  17. Navone N. M., Polo C. F., Frisardi A. L., Andrade N. E., Battle A. M. Heme biosynthesis in human breast cancer--mimetic "in vitro" studies and some heme enzymic activity levels. Int J Biochem. 1990;22(12):1407–1411. doi: 10.1016/0020-711x(90)90230-z. [DOI] [PubMed] [Google Scholar]
  18. Ortel B., Tanew A., Hönigsmann H. Lethal photosensitization by endogenous porphyrins of PAM cells--modification by desferrioxamine. J Photochem Photobiol B. 1993 Mar;17(3):273–278. doi: 10.1016/1011-1344(93)80025-5. [DOI] [PubMed] [Google Scholar]
  19. Peng Q., Moan J., Warloe T., Iani V., Steen H. B., Bjørseth A., Nesland J. M. Build-up of esterified aminolevulinic-acid-derivative-induced porphyrin fluorescence in normal mouse skin. J Photochem Photobiol B. 1996 Jun;34(1):95–96. doi: 10.1016/1011-1344(95)07268-3. [DOI] [PubMed] [Google Scholar]
  20. Peng Q., Warloe T., Berg K., Moan J., Kongshaug M., Giercksky K. E., Nesland J. M. 5-Aminolevulinic acid-based photodynamic therapy. Clinical research and future challenges. Cancer. 1997 Jun 15;79(12):2282–2308. doi: 10.1002/(sici)1097-0142(19970615)79:12<2282::aid-cncr2>3.0.co;2-o. [DOI] [PubMed] [Google Scholar]
  21. Rebeiz N., Rebeiz C. C., Arkins S., Kelley K. W., Rebeiz C. A. Photodestruction of tumor cells by induction of endogenous accumulation of protoporphyrin IX: enhancement by 1,10-phenanthroline. Photochem Photobiol. 1992 Mar;55(3):431–435. doi: 10.1111/j.1751-1097.1992.tb04258.x. [DOI] [PubMed] [Google Scholar]
  22. Van Hillegersberg R., Van den Berg J. W., Kort W. J., Terpstra O. T., Wilson J. H. Selective accumulation of endogenously produced porphyrins in a liver metastasis model in rats. Gastroenterology. 1992 Aug;103(2):647–651. doi: 10.1016/0016-5085(92)90860-2. [DOI] [PubMed] [Google Scholar]
  23. Washbrook R., Fukuda H., Battle A., Riley P. Stimulation of tetrapyrrole synthesis in mammalian epithelial cells in culture by exposure to aminolaevulinic acid. Br J Cancer. 1997;75(3):381–387. doi: 10.1038/bjc.1997.62. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Washbrook R., Riley P. A. Comparison of delta-aminolaevulinic acid and its methyl ester as an inducer of porphyrin synthesis in cultured cells. Br J Cancer. 1997;75(10):1417–1420. doi: 10.1038/bjc.1997.244. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES