Abstract
Prepubertal exposure to a pharmacological dose (500 mg kg−1) of the phyto-oestrogen genistein can reduce the incidence and multiplicity of carcinogen-induced mammary tumours in rats. However, such an exposure also disrupts the function of the hypothalamic–pituitary–gonadal axis, making it unsuitable for breast cancer prevention. We studied whether prepubertal exposure to genistein at a total body dose broadly comparable to the level typical of Oriental countries, approximately 1 mg kg−1 body weight, affects mammary tumorigenesis. We also studied whether prepubertal exposure to zearalenone, a major source for phyto-oestrogens in the USA, influences breast cancer risk. Prepubertal rats were treated between postnatal days 7 and 20, with 20 μg (~ 1 mg kg−1 body weight) of either genistein or zearalenone. Zearalenone exposure significantly reduced both the incidence and multiplicity of mammary tumours induced by 7,12-dimethylbenz(a)anthracene (DMBA). Genistein exposure significantly reduced tumour multiplicity, but not tumour incidence, when compared with vehicle-treated animals. Furthermore, 60% of the tumours in the genistein group were not malignant, while all the tumours analysed for histopathology in the vehicle and zearalenone groups were adenocarcinomas. A higher number of differentiated alveolar buds, and lower number of terminal ducts, were present in the DMBA-treated mammary glands of the phyto-oestrogen exposed rats. The concentration of oestrogen receptor (ER) binding sites after the DMBA treatment was low in the mammary glands of all groups but a significantly higher proportion of the glands in the zearalenone exposed rats were ER-positive (i.e. ER levels ≥ 5 fmol mg−1 protein) than the glands of the vehicle controls. Our data suggest that a prepubertal exposure to a low dose of either zearalenone or genistein may protect the mammary gland from carcinogen-induced malignant transformation, possibly by increasing differentiation of the mammary epithelial tree. © 1999 Cancer Research Campaign
Keywords: genistein, zearalenone, prepuberty, mammary tumorigenesis
Full Text
The Full Text of this article is available as a PDF (197.4 KB).
Footnotes
This work was supported by grants from the American Cancer Society (CN-80420), and the Lombardi Cancer Center Shared Animal Resource Facility, U.S. Public Health Service Grant 2P30-CA51008.
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akiyama T., Ishida J., Nakagawa S., Ogawara H., Watanabe S., Itoh N., Shibuya M., Fukami Y. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem. 1987 Apr 25;262(12):5592–5595. [PubMed] [Google Scholar]
- Barnes S. The chemopreventive properties of soy isoflavonoids in animal models of breast cancer. Breast Cancer Res Treat. 1997 Nov-Dec;46(2-3):169–179. doi: 10.1023/a:1005956326155. [DOI] [PubMed] [Google Scholar]
- Clark G. M., McGuire W. L. Steroid receptors and other prognostic factors in primary breast cancer. Semin Oncol. 1988 Apr;15(2 Suppl 1):20–25. [PubMed] [Google Scholar]
- Clarke R., Dickson R. B., Lippman M. E. Hormonal aspects of breast cancer. Growth factors, drugs and stromal interactions. Crit Rev Oncol Hematol. 1992 Jan;12(1):1–23. doi: 10.1016/1040-8428(92)90062-u. [DOI] [PubMed] [Google Scholar]
- Clarke R. Issues in experimental design and endpoint analysis in the study of experimental cytotoxic agents in vivo in breast cancer and other models. Breast Cancer Res Treat. 1997 Nov-Dec;46(2-3):255–278. doi: 10.1023/a:1005938428456. [DOI] [PubMed] [Google Scholar]
- Collins B. M., McLachlan J. A., Arnold S. F. The estrogenic and antiestrogenic activities of phytochemicals with the human estrogen receptor expressed in yeast. Steroids. 1997 Apr;62(4):365–372. doi: 10.1016/s0039-128x(96)00246-2. [DOI] [PubMed] [Google Scholar]
- Ekbom A., Trichopoulos D., Adami H. O., Hsieh C. C., Lan S. J. Evidence of prenatal influences on breast cancer risk. Lancet. 1992 Oct 24;340(8826):1015–1018. doi: 10.1016/0140-6736(92)93019-j. [DOI] [PubMed] [Google Scholar]
- Faber K. A., Hughes C. L., Jr The effect of neonatal exposure to diethylstilbestrol, genistein, and zearalenone on pituitary responsiveness and sexually dimorphic nucleus volume in the castrated adult rat. Biol Reprod. 1991 Oct;45(4):649–653. doi: 10.1095/biolreprod45.4.649. [DOI] [PubMed] [Google Scholar]
- Freireich E. J., Gehan E. A., Rall D. P., Schmidt L. H., Skipper H. E. Quantitative comparison of toxicity of anticancer agents in mouse, rat, hamster, dog, monkey, and man. Cancer Chemother Rep. 1966 May;50(4):219–244. [PubMed] [Google Scholar]
- Fukutake M., Takahashi M., Ishida K., Kawamura H., Sugimura T., Wakabayashi K. Quantification of genistein and genistin in soybeans and soybean products. Food Chem Toxicol. 1996 May;34(5):457–461. doi: 10.1016/0278-6915(96)87355-8. [DOI] [PubMed] [Google Scholar]
- Gotoh T., Yamada K., Yin H., Ito A., Kataoka T., Dohi K. Chemoprevention of N-nitroso-N-methylurea-induced rat mammary carcinogenesis by soy foods or biochanin A. Jpn J Cancer Res. 1998 Feb;89(2):137–142. doi: 10.1111/j.1349-7006.1998.tb00541.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grodstein F., Stampfer M. J., Colditz G. A., Willett W. C., Manson J. E., Joffe M., Rosner B., Fuchs C., Hankinson S. E., Hunter D. J. Postmenopausal hormone therapy and mortality. N Engl J Med. 1997 Jun 19;336(25):1769–1775. doi: 10.1056/NEJM199706193362501. [DOI] [PubMed] [Google Scholar]
- Grubbs C. J., Farnell D. R., Hill D. L., McDonough K. C. Chemoprevention of N-nitroso-N-methylurea-induced mammary cancers by pretreatment with 17 beta-estradiol and progesterone. J Natl Cancer Inst. 1985 Apr;74(4):927–931. [PubMed] [Google Scholar]
- Hagler W. M., Jr, Tyczkowska K., Hamilton P. B. Simultaneous occurrence of deoxynivalenol, zearalenone, and aflatoxin in 1982 scabby wheat from the midwestern United States. Appl Environ Microbiol. 1984 Jan;47(1):151–154. doi: 10.1128/aem.47.1.151-154.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hanfelt J. J. Statistical approaches to experimental design and data analysis of in vivo studies. Breast Cancer Res Treat. 1997 Nov-Dec;46(2-3):279–302. doi: 10.1023/a:1005946614343. [DOI] [PubMed] [Google Scholar]
- Haslam S. Z. The ontogeny of mouse mammary gland responsiveness to ovarian steroid hormones. Endocrinology. 1989 Nov;125(5):2766–2772. doi: 10.1210/endo-125-5-2766. [DOI] [PubMed] [Google Scholar]
- Hawrylewicz E. J., Huang H. H., Blair W. H. Dietary soybean isolate and methionine supplementation affect mammary tumor progression in rats. J Nutr. 1991 Oct;121(10):1693–1698. doi: 10.1093/jn/121.10.1693. [DOI] [PubMed] [Google Scholar]
- Hilakivi-Clarke L., Cho E., Raygada M., Kenney N. Alterations in mammary gland development following neonatal exposure to estradiol, transforming growth factor alpha, and estrogen receptor antagonist ICI 182,780. J Cell Physiol. 1997 Mar;170(3):279–289. doi: 10.1002/(SICI)1097-4652(199703)170:3<279::AID-JCP9>3.0.CO;2-L. [DOI] [PubMed] [Google Scholar]
- Hilakivi-Clarke L., Clarke R., Onojafe I., Raygada M., Cho E., Lippman M. A maternal diet high in n - 6 polyunsaturated fats alters mammary gland development, puberty onset, and breast cancer risk among female rat offspring. Proc Natl Acad Sci U S A. 1997 Aug 19;94(17):9372–9377. doi: 10.1073/pnas.94.17.9372. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hilakivi-Clarke L., Stoica A., Raygada M., Martin M. B. Consumption of a high-fat diet alters estrogen receptor content, protein kinase C activity, and mammary gland morphology in virgin and pregnant mice and female offspring. Cancer Res. 1998 Feb 15;58(4):654–660. [PubMed] [Google Scholar]
- Hirohata T., Shigematsu T., Nomura A. M., Nomura Y., Horie A., Hirohata I. Occurrence of breast cancer in relation to diet and reproductive history: a case-control study in Fukuoka, Japan. Natl Cancer Inst Monogr. 1985 Dec;69:187–190. [PubMed] [Google Scholar]
- Hsieh C. Y., Santell R. C., Haslam S. Z., Helferich W. G. Estrogenic effects of genistein on the growth of estrogen receptor-positive human breast cancer (MCF-7) cells in vitro and in vivo. Cancer Res. 1998 Sep 1;58(17):3833–3838. [PubMed] [Google Scholar]
- Ingram D., Sanders K., Kolybaba M., Lopez D. Case-control study of phyto-oestrogens and breast cancer. Lancet. 1997 Oct 4;350(9083):990–994. doi: 10.1016/S0140-6736(97)01339-1. [DOI] [PubMed] [Google Scholar]
- Kuiper-Goodman T. Uncertainties in the risk assessment of three mycotoxins: aflatoxin, ochratoxin, and zearalenone. Can J Physiol Pharmacol. 1990 Jul;68(7):1017–1024. doi: 10.1139/y90-155. [DOI] [PubMed] [Google Scholar]
- Lee H. P., Gourley L., Duffy S. W., Estéve J., Lee J., Day N. E. Dietary effects on breast-cancer risk in Singapore. Lancet. 1991 May 18;337(8751):1197–1200. doi: 10.1016/0140-6736(91)92867-2. [DOI] [PubMed] [Google Scholar]
- Lopez J., Ogren L., Verjan R., Talamantes F. Effects of perinatal exposure to a synthetic estrogen and progestin on mammary tumorigenesis in mice. Teratology. 1988 Aug;38(2):129–134. doi: 10.1002/tera.1420380205. [DOI] [PubMed] [Google Scholar]
- Lu L. J., Broemeling L. D., Marshall M. V., Ramanujam V. M. A simplified method to quantify isoflavones in commercial soybean diets and human urine after legume consumption. Cancer Epidemiol Biomarkers Prev. 1995 Jul-Aug;4(5):497–503. [PubMed] [Google Scholar]
- Luo Y., Yoshizawa T., Katayama T. Comparative study on the natural occurrence of Fusarium mycotoxins (trichothecenes and zearalenone) in corn and wheat from high- and low-risk areas for human esophageal cancer in China. Appl Environ Microbiol. 1990 Dec;56(12):3723–3726. doi: 10.1128/aem.56.12.3723-3726.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin P. M., Horwitz K. B., Ryan D. S., McGuire W. L. Phytoestrogen interaction with estrogen receptors in human breast cancer cells. Endocrinology. 1978 Nov;103(5):1860–1867. doi: 10.1210/endo-103-5-1860. [DOI] [PubMed] [Google Scholar]
- McMichael-Phillips D. F., Harding C., Morton M., Roberts S. A., Howell A., Potten C. S., Bundred N. J. Effects of soy-protein supplementation on epithelial proliferation in the histologically normal human breast. Am J Clin Nutr. 1998 Dec;68(6 Suppl):1431S–1435S. doi: 10.1093/ajcn/68.6.1431S. [DOI] [PubMed] [Google Scholar]
- Messina M. J., Persky V., Setchell K. D., Barnes S. Soy intake and cancer risk: a review of the in vitro and in vivo data. Nutr Cancer. 1994;21(2):113–131. doi: 10.1080/01635589409514310. [DOI] [PubMed] [Google Scholar]
- Michels K. B., Trichopoulos D., Robins J. M., Rosner B. A., Manson J. E., Hunter D. J., Colditz G. A., Hankinson S. E., Speizer F. E., Willett W. C. Birthweight as a risk factor for breast cancer. Lancet. 1996 Dec 7;348(9041):1542–1546. doi: 10.1016/S0140-6736(96)03102-9. [DOI] [PubMed] [Google Scholar]
- Murrill W. B., Brown N. M., Zhang J. X., Manzolillo P. A., Barnes S., Lamartiniere C. A. Prepubertal genistein exposure suppresses mammary cancer and enhances gland differentiation in rats. Carcinogenesis. 1996 Jul;17(7):1451–1457. doi: 10.1093/carcin/17.7.1451. [DOI] [PubMed] [Google Scholar]
- Nagasawa H., Yanai R., Shodono M., Nakamura T., Tanabe Y. Effect of neonatally administered estrogen or prolactin on normal and neoplastic mammary growth and serum estradiol-17 beta level in rats. Cancer Res. 1974 Oct;34(10):2643–2646. [PubMed] [Google Scholar]
- Nelson J., Clarke R., Dickson G. R., van den Berg H. W., Murphy R. F. The effects of Mg2+ ions or EDTA on nuclear integrity and apparent subcellular distribution of unoccupied oestrogen receptors in breast cancer cells. J Steroid Biochem. 1986 Nov;25(5A):619–626. doi: 10.1016/0022-4731(86)90003-8. [DOI] [PubMed] [Google Scholar]
- Nomura A., Henderson B. E., Lee J. Breast cancer and diet among the Japanese in Hawaii. Am J Clin Nutr. 1978 Nov;31(11):2020–2025. doi: 10.1093/ajcn/31.11.2020. [DOI] [PubMed] [Google Scholar]
- Petrakis N. L., Barnes S., King E. B., Lowenstein J., Wiencke J., Lee M. M., Miike R., Kirk M., Coward L. Stimulatory influence of soy protein isolate on breast secretion in pre- and postmenopausal women. Cancer Epidemiol Biomarkers Prev. 1996 Oct;5(10):785–794. [PubMed] [Google Scholar]
- Russo J., Russo I. H. Biological and molecular bases of mammary carcinogenesis. Lab Invest. 1987 Aug;57(2):112–137. [PubMed] [Google Scholar]
- Sanderson M., Williams M. A., Malone K. E., Stanford J. L., Emanuel I., White E., Daling J. R. Perinatal factors and risk of breast cancer. Epidemiology. 1996 Jan;7(1):34–37. doi: 10.1097/00001648-199601000-00007. [DOI] [PubMed] [Google Scholar]
- Santell R. C., Chang Y. C., Nair M. G., Helferich W. G. Dietary genistein exerts estrogenic effects upon the uterus, mammary gland and the hypothalamic/pituitary axis in rats. J Nutr. 1997 Feb;127(2):263–269. doi: 10.1093/jn/127.2.263. [DOI] [PubMed] [Google Scholar]
- Schoental R. Letter: Role of podophyllotoxin in the bedding and dietary zearalenone on incidence of spontaneous tumors in laboratory animals. Cancer Res. 1974 Sep;34(9):2419–2420. [PubMed] [Google Scholar]
- Schoental R. Trichothecenes, zearalenone, and other carcinogenic metabolites of Fusarium and related microfungi. Adv Cancer Res. 1985;45:217–290. doi: 10.1016/s0065-230x(08)60270-5. [DOI] [PubMed] [Google Scholar]
- Seow A., Shi C. Y., Franke A. A., Hankin J. H., Lee H. P., Yu M. C. Isoflavonoid levels in spot urine are associated with frequency of dietary soy intake in a population-based sample of middle-aged and older Chinese in Singapore. Cancer Epidemiol Biomarkers Prev. 1998 Feb;7(2):135–140. [PubMed] [Google Scholar]
- Setchell K. D., Borriello S. P., Hulme P., Kirk D. N., Axelson M. Nonsteroidal estrogens of dietary origin: possible roles in hormone-dependent disease. Am J Clin Nutr. 1984 Sep;40(3):569–578. doi: 10.1093/ajcn/40.3.569. [DOI] [PubMed] [Google Scholar]
- Thordarson G., Jin E., Guzman R. C., Swanson S. M., Nandi S., Talamantes F. Refractoriness to mammary tumorigenesis in parous rats: is it caused by persistent changes in the hormonal environment or permanent biochemical alterations in the mammary epithelia? Carcinogenesis. 1995 Nov;16(11):2847–2853. doi: 10.1093/carcin/16.11.2847. [DOI] [PubMed] [Google Scholar]
- Verhoeven G., Vandoren G., Heyns W., Kühn E. R., Janssens J. P., Teuwen D., Goddeeris P., Lesaffre E., De Moor P. Incidence, growth and oestradiol-receptor levels of 7, 12-dimethylbenz (alpha) anthracene-induced mammary tumours in rats: effects of neonatal sex steroids and oestradiol implants. J Endocrinol. 1982 Dec;95(3):357–368. doi: 10.1677/joe.0.0950357. [DOI] [PubMed] [Google Scholar]
- Wang T. T., Sathyamoorthy N., Phang J. M. Molecular effects of genistein on estrogen receptor mediated pathways. Carcinogenesis. 1996 Feb;17(2):271–275. doi: 10.1093/carcin/17.2.271. [DOI] [PubMed] [Google Scholar]
- Winstanley J., Cooke T., George W. D., Murray G., Holt S., Croton R., Griffiths K., Nicholson R. The long term prognostic significance of oestrogen receptor analysis in early carcinoma of the breast. Br J Cancer. 1991 Jul;64(1):99–101. doi: 10.1038/bjc.1991.249. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Witte J. S., Ursin G., Siemiatycki J., Thompson W. D., Paganini-Hill A., Haile R. W. Diet and premenopausal bilateral breast cancer: a case-control study. Breast Cancer Res Treat. 1997 Feb;42(3):243–251. doi: 10.1023/a:1005710211184. [DOI] [PubMed] [Google Scholar]
- Wu A. H., Ziegler R. G., Horn-Ross P. L., Nomura A. M., West D. W., Kolonel L. N., Rosenthal J. F., Hoover R. N., Pike M. C. Tofu and risk of breast cancer in Asian-Americans. Cancer Epidemiol Biomarkers Prev. 1996 Nov;5(11):901–906. [PubMed] [Google Scholar]
- Wu A. H., Ziegler R. G., Nomura A. M., West D. W., Kolonel L. N., Horn-Ross P. L., Hoover R. N., Pike M. C. Soy intake and risk of breast cancer in Asians and Asian Americans. Am J Clin Nutr. 1998 Dec;68(6 Suppl):1437S–1443S. doi: 10.1093/ajcn/68.6.1437S. [DOI] [PubMed] [Google Scholar]
- Yuan J. M., Wang Q. S., Ross R. K., Henderson B. E., Yu M. C. Diet and breast cancer in Shanghai and Tianjin, China. Br J Cancer. 1995 Jun;71(6):1353–1358. doi: 10.1038/bjc.1995.263. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zava D. T., Duwe G. Estrogenic and antiproliferative properties of genistein and other flavonoids in human breast cancer cells in vitro. Nutr Cancer. 1997;27(1):31–40. doi: 10.1080/01635589709514498. [DOI] [PubMed] [Google Scholar]
- Zheng W., Dai Q., Custer L. J., Shu X. O., Wen W. Q., Jin F., Franke A. A. Urinary excretion of isoflavonoids and the risk of breast cancer. Cancer Epidemiol Biomarkers Prev. 1999 Jan;8(1):35–40. [PubMed] [Google Scholar]