Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Aug;80(12):1912–1919. doi: 10.1038/sj.bjc.6690620

A novel charged trinuclear platinum complex effective against cisplatin-resistant tumours: hypersensitivity of p53-mutant human tumour xenografts

G Pratesi 1, P Perego 1, D Polizzi 1, S C Righetti 1, R Supino 1, C Caserini 1, C Manzotti 2, F C Giuliani 2, G Pezzoni 2, S Tognella 2, S Spinelli 2, N Farrell 3, F Zunino 1
PMCID: PMC2363141  PMID: 10471039

Abstract

Multinuclear platinum compounds were rationally designed to bind to DNA in a different manner from that of cisplatin and its mononuclear analogues. A triplatinum compound of the series (BBR 3464) was selected for preclinical development, since, in spite of its charged nature, it was very potent as cytotoxic agent and effective against cisplatin-resistant tumour cells. Anti-tumour efficacy studies were performed in a panel of human tumour xenografts refractory or poorly responsive to cisplatin. The novel platinum compound exhibited efficacy in all tested tumours and an impressive efficacy (including complete tumour regressions) was displayed in two lung carcinoma models, CaLu-3 and POCS. Surprisingly, BBR 3464 showed a superior activity against p53-mutant tumours as compared to those carrying the wild-type gene. The involvement of p53 in tumour response was investigated in an osteosarcoma cell line, SAOS, which is null for p53 and is highly sensitive to BBR 3464, and in the same cells following introduction of the wild-type p53 gene. Thus the pattern of cellular response was investigated in a panel of human tumour cells with a different p53 gene status. The results showed that the transfer of functional p53 resulted in a marked (tenfold) reduction of cellular chemosensitivity to the multinuclear platinum complex but in a moderate sensitization to cisplatin. In addition, in contrast to cisplatin, the triplatinum complex was very effective as an inducer of apoptosis in a lung carcinoma cell line carrying mutant p53. The peculiar pattern of anti-tumour activity of the triplatinum complex and its ability to induce p53-independent cell death may have relevant pharmacological implications, since p53, a critical protein involved in DNA repair and induction of apoptosis by conventional DNA-damaging agents, is defective in several human tumours. We suggest that the peculiar DNA binding properties of the triplatinum complex may contribute to the striking profile of anti-tumour efficacy. Taken together, the available information supports that anti-tumour activity of the novel compound is mediated by a mechanism different from that of conventional platinum complexes, and compounds of this series could represent a new class of promising anti-tumour agents. © 1999 Cancer Research Campaign

Keywords: multinuclear platinum complex, cisplatin, drug resistance, p53 mutation

Full Text

The Full Text of this article is available as a PDF (134.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brachmann R. K., Vidal M., Boeke J. D. Dominant-negative p53 mutations selected in yeast hit cancer hot spots. Proc Natl Acad Sci U S A. 1996 Apr 30;93(9):4091–4095. doi: 10.1073/pnas.93.9.4091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Caserini C., Pratesi G., Tortoreto M., Bedogné B., Carenini N., Supino R., Perego P., Righetti S. C., Zunino F. Apoptosis as a determinant of tumor sensitivity to topotecan in human ovarian tumors: preclinical in vitro/in vivo studies. Clin Cancer Res. 1997 Jun;3(6):955–961. [PubMed] [Google Scholar]
  3. Chu G. Cellular responses to cisplatin. The roles of DNA-binding proteins and DNA repair. J Biol Chem. 1994 Jan 14;269(2):787–790. [PubMed] [Google Scholar]
  4. Crul M., Schellens J. H., Beijnen J. H., Maliepaard M. Cisplatin resistance and DNA repair. Cancer Treat Rev. 1997 Sep-Nov;23(5-6):341–366. doi: 10.1016/s0305-7372(97)90032-3. [DOI] [PubMed] [Google Scholar]
  5. Eastman A. The formation, isolation and characterization of DNA adducts produced by anticancer platinum complexes. Pharmacol Ther. 1987;34(2):155–166. doi: 10.1016/0163-7258(87)90009-x. [DOI] [PubMed] [Google Scholar]
  6. Farrell N., Appleton T. G., Qu Y., Roberts J. D., Fontes A. P., Skov K. A., Wu P., Zou Y. Effects of geometric isomerism and ligand substitution in bifunctional dinuclear platinum complexes on binding properties and conformational changes in DNA. Biochemistry. 1995 Nov 28;34(47):15480–15486. doi: 10.1021/bi00047a013. [DOI] [PubMed] [Google Scholar]
  7. Farrell N. Nonclassical platinum antitumor agents: perspectives for design and development of new drugs complementary to cisplatin. Cancer Invest. 1993;11(5):578–589. doi: 10.3109/07357909309011676. [DOI] [PubMed] [Google Scholar]
  8. Fink D., Nebel S., Aebi S., Zheng H., Cenni B., Nehmé A., Christen R. D., Howell S. B. The role of DNA mismatch repair in platinum drug resistance. Cancer Res. 1996 Nov 1;56(21):4881–4886. [PubMed] [Google Scholar]
  9. Harris C. C. Structure and function of the p53 tumor suppressor gene: clues for rational cancer therapeutic strategies. J Natl Cancer Inst. 1996 Oct 16;88(20):1442–1455. doi: 10.1093/jnci/88.20.1442. [DOI] [PubMed] [Google Scholar]
  10. Hecker D., Page G., Lohrum M., Weiland S., Scheidtmann K. H. Complex regulation of the DNA-binding activity of p53 by phosphorylation: differential effects of individual phosphorylation sites on the interaction with different binding motifs. Oncogene. 1996 Mar 7;12(5):953–961. [PubMed] [Google Scholar]
  11. Hickman J. A. Apoptosis and chemotherapy resistance. Eur J Cancer. 1996 Jun;32A(6):921–926. doi: 10.1016/0959-8049(96)00080-9. [DOI] [PubMed] [Google Scholar]
  12. Johnson A., Qu Y., Van Houten B., Farrell N. B----Z DNA conformational changes induced by a family of dinuclear bis(platinum) complexes. Nucleic Acids Res. 1992 Apr 11;20(7):1697–1703. doi: 10.1093/nar/20.7.1697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kastan M. B., Canman C. E., Leonard C. J. P53, cell cycle control and apoptosis: implications for cancer. Cancer Metastasis Rev. 1995 Mar;14(1):3–15. doi: 10.1007/BF00690207. [DOI] [PubMed] [Google Scholar]
  14. Kelland L. R. The molecular basis of cisplatin sensitivity/resistance. Eur J Cancer. 1994;30A(6):725–727. doi: 10.1016/0959-8049(94)90281-x. [DOI] [PubMed] [Google Scholar]
  15. Lowe S. W., Bodis S., McClatchey A., Remington L., Ruley H. E., Fisher D. E., Housman D. E., Jacks T. p53 status and the efficacy of cancer therapy in vivo. Science. 1994 Nov 4;266(5186):807–810. doi: 10.1126/science.7973635. [DOI] [PubMed] [Google Scholar]
  16. O'Connor P. M., Jackman J., Bae I., Myers T. G., Fan S., Mutoh M., Scudiero D. A., Monks A., Sausville E. A., Weinstein J. N. Characterization of the p53 tumor suppressor pathway in cell lines of the National Cancer Institute anticancer drug screen and correlations with the growth-inhibitory potency of 123 anticancer agents. Cancer Res. 1997 Oct 1;57(19):4285–4300. [PubMed] [Google Scholar]
  17. Perego P., Caserini C., Gatti L., Carenini N., Romanelli S., Supino R., Colangelo D., Viano I., Leone R., Spinelli S. A novel trinuclear platinum complex overcomes cisplatin resistance in an osteosarcoma cell system. Mol Pharmacol. 1999 Mar;55(3):528–534. [PubMed] [Google Scholar]
  18. Perego P., Giarola M., Righetti S. C., Supino R., Caserini C., Delia D., Pierotti M. A., Miyashita T., Reed J. C., Zunino F. Association between cisplatin resistance and mutation of p53 gene and reduced bax expression in ovarian carcinoma cell systems. Cancer Res. 1996 Feb 1;56(3):556–562. [PubMed] [Google Scholar]
  19. Perego P., Righetti S. C., Supino R., Delia D., Caserini C., Carenini N., Bedogné B., Broome E., Krajewski S., Reed J. C. Role of apoptosis and apoptosis-related proteins in the cisplatin-resistant phenotype of human tumor cell lines. Apoptosis. 1997;2(6):540–548. doi: 10.1023/a:1026442716000. [DOI] [PubMed] [Google Scholar]
  20. Righetti S. C., Della Torre G., Pilotti S., Ménard S., Ottone F., Colnaghi M. I., Pierotti M. A., Lavarino C., Cornarotti M., Oriana S. A comparative study of p53 gene mutations, protein accumulation, and response to cisplatin-based chemotherapy in advanced ovarian carcinoma. Cancer Res. 1996 Feb 15;56(4):689–693. [PubMed] [Google Scholar]
  21. Rolley N., Butcher S., Milner J. Specific DNA binding by different classes of human p53 mutants. Oncogene. 1995 Aug 17;11(4):763–770. [PubMed] [Google Scholar]
  22. UKCCCR guidelines for the welfare of animals in experimental neoplasia. Br J Cancer. 1988 Jul;58(1):109–113. doi: 10.1038/bjc.1988.174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Vogelstein B., Kinzler K. W. Tumour-suppressor genes. X-rays strike p53 again. Nature. 1994 Jul 21;370(6486):174–175. doi: 10.1038/370174a0. [DOI] [PubMed] [Google Scholar]
  24. Wang X. W., Yeh H., Schaeffer L., Roy R., Moncollin V., Egly J. M., Wang Z., Freidberg E. C., Evans M. K., Taffe B. G. p53 modulation of TFIIH-associated nucleotide excision repair activity. Nat Genet. 1995 Jun;10(2):188–195. doi: 10.1038/ng0695-188. [DOI] [PubMed] [Google Scholar]
  25. Wu P. K., Kharatishvili M., Qu Y., Farrell N. A circular dichroism study of ethidium bromide binding to Z-DNA induced by dinuclear platinum complexes. J Inorg Biochem. 1996 Jul;63(1):9–18. doi: 10.1016/0162-0134(95)00163-8. [DOI] [PubMed] [Google Scholar]
  26. Zunino F., Perego P., Pilotti S., Pratesi G., Supino R., Arcamone F. Role of apoptotic response in cellular resistance to cytotoxic agents. Pharmacol Ther. 1997 Oct-Dec;76(1-3):177–185. doi: 10.1016/s0163-7258(97)00086-7. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES