Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Aug;80(12):1892–1897. doi: 10.1038/sj.bjc.6690617

Acidic environment causes apoptosis by increasing caspase activity

H J Park 1,2, J C Lyons 1, T Ohtsubo 1, C W Song 1
PMCID: PMC2363148  PMID: 10471036

Abstract

An exposure of HL-60 human promyelocytic leukaemia cells to acidic media with pH 6.2–6.6 caused an up-regulation of Bax protein expression within 2 h, which lasted for longer than 6 h. On the other hand, the apoptosis, as judged from PARP cleavage, DNA fragmentation and flow cytometric determination of cell population with sub-G1 DNA content, occurred after the cells were incubated in the acidic media for longer than 4 h. The PARP cleavage and DNA fragmentation in the cells exposed to an acidic environment could be effectively suppressed by inhibitors specific for ICE or CPP32, indicating that activation of these caspases is an essential step in acidic stress-induced apoptosis. It has been known that Bax is involved in the activation of caspases. Taken together, it appears that acidic stress first up-regulates Bax protein thereby activating caspases followed by PARP cleavage and DNA fragmentation. The observation that inhibition of either ICE or CPP32 could suppress acidic stress-induced apoptosis suggested that ICE activates pro-CPP32, which then cleaves PARP. Flow cytometric analysis indicated that acidic stress-induced apoptosis occurs mainly in G1 cells. The finding in the present study demonstrated that acidic intra-tumour environment may markedly perturb the tumour cell proliferation and tumour growth. © 1999 Cancer Research Campaign

Keywords: apoptosis, acidic stress, pHi, caspases, PARP cleavage, Bax

Full Text

The Full Text of this article is available as a PDF (242.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Casciola-Rosen L. A., Anhalt G. J., Rosen A. DNA-dependent protein kinase is one of a subset of autoantigens specifically cleaved early during apoptosis. J Exp Med. 1995 Dec 1;182(6):1625–1634. doi: 10.1084/jem.182.6.1625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chu G. L., Dewey W. C. The role of low intracellular or extracellular pH in sensitization to hyperthermia. Radiat Res. 1988 Apr;114(1):154–167. [PubMed] [Google Scholar]
  3. Craig R. W. The bcl-2 gene family. Semin Cancer Biol. 1995 Feb;6(1):35–43. doi: 10.1006/scbi.1995.0005. [DOI] [PubMed] [Google Scholar]
  4. Darmon A. J., Nicholson D. W., Bleackley R. C. Activation of the apoptotic protease CPP32 by cytotoxic T-cell-derived granzyme B. Nature. 1995 Oct 5;377(6548):446–448. doi: 10.1038/377446a0. [DOI] [PubMed] [Google Scholar]
  5. Darzynkiewicz Z., Bruno S., Del Bino G., Gorczyca W., Hotz M. A., Lassota P., Traganos F. Features of apoptotic cells measured by flow cytometry. Cytometry. 1992;13(8):795–808. doi: 10.1002/cyto.990130802. [DOI] [PubMed] [Google Scholar]
  6. Dewey W. C., Ling C. C., Meyn R. E. Radiation-induced apoptosis: relevance to radiotherapy. Int J Radiat Oncol Biol Phys. 1995 Nov 1;33(4):781–796. doi: 10.1016/0360-3016(95)00214-8. [DOI] [PubMed] [Google Scholar]
  7. Duan H., Chinnaiyan A. M., Hudson P. L., Wing J. P., He W. W., Dixit V. M. ICE-LAP3, a novel mammalian homologue of the Caenorhabditis elegans cell death protein Ced-3 is activated during Fas- and tumor necrosis factor-induced apoptosis. J Biol Chem. 1996 Jan 19;271(3):1621–1625. doi: 10.1074/jbc.271.3.1621. [DOI] [PubMed] [Google Scholar]
  8. Enari M., Sakahira H., Yokoyama H., Okawa K., Iwamatsu A., Nagata S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature. 1998 Jan 1;391(6662):43–50. doi: 10.1038/34112. [DOI] [PubMed] [Google Scholar]
  9. Furlong I. J., Ascaso R., Lopez Rivas A., Collins M. K. Intracellular acidification induces apoptosis by stimulating ICE-like protease activity. J Cell Sci. 1997 Mar;110(Pt 5):653–661. doi: 10.1242/jcs.110.5.653. [DOI] [PubMed] [Google Scholar]
  10. Griffiths J. R. Are cancer cells acidic? Br J Cancer. 1991 Sep;64(3):425–427. doi: 10.1038/bjc.1991.326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Haveman J. The pH of the cytoplasm as an important factor in the survival of in vitro cultured malignant cells after hyperthermia. Effects of carbonylcyanide 3-chlorophenylhydrazone. Eur J Cancer. 1979 Oct;15(10):1281–1288. doi: 10.1016/0014-2964(79)90255-x. [DOI] [PubMed] [Google Scholar]
  12. Jähde E., Glüsenkamp K. H., Klünder I., Hülser D. F., Tietze L. F., Rajewsky M. F. Hydrogen ion-mediated enhancement of cytotoxicity of bis-chloroethylating drugs in rat mammary carcinoma cells in vitro. Cancer Res. 1989 Jun 1;49(11):2965–2972. [PubMed] [Google Scholar]
  13. Kaufmann S. H., Desnoyers S., Ottaviano Y., Davidson N. E., Poirier G. G. Specific proteolytic cleavage of poly(ADP-ribose) polymerase: an early marker of chemotherapy-induced apoptosis. Cancer Res. 1993 Sep 1;53(17):3976–3985. [PubMed] [Google Scholar]
  14. Kim G. E., Lyons J. C., Song C. W. Effects of amiloride on intracellular pH and thermosensitivity. Int J Radiat Oncol Biol Phys. 1991 Mar;20(3):541–549. doi: 10.1016/0360-3016(91)90067-e. [DOI] [PubMed] [Google Scholar]
  15. Kumar S., Lavin M. F. The ICE family of cysteine proteases as effectors of cell death. Cell Death Differ. 1996 Jul;3(3):255–267. [PubMed] [Google Scholar]
  16. Lazebnik Y. A., Kaufmann S. H., Desnoyers S., Poirier G. G., Earnshaw W. C. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature. 1994 Sep 22;371(6495):346–347. doi: 10.1038/371346a0. [DOI] [PubMed] [Google Scholar]
  17. Lee H. S., Park H. J., Lyons J. C., Griffin R. J., Auger E. A., Song C. W. Radiation-induced apoptosis in different pH environments in vitro. Int J Radiat Oncol Biol Phys. 1997 Jul 15;38(5):1079–1087. doi: 10.1016/s0360-3016(97)00073-4. [DOI] [PubMed] [Google Scholar]
  18. Liu F. F., Sherar M. D., Hill R. P. The relationship between intracellular pH and heat sensitivity in a thermoresistant cell line. Radiat Res. 1996 Feb;145(2):144–149. [PubMed] [Google Scholar]
  19. Liu J. C., Fox M. H. Modification of intracellular pH and thermotolerance development by amiloride. Int J Hyperthermia. 1995 Jul-Aug;11(4):511–522. doi: 10.3109/02656739509022486. [DOI] [PubMed] [Google Scholar]
  20. Negri C., Bernardi R., Braghetti A., Ricotti G. C., Scovassi A. I. The effect of the chemotherapeutic drug VP-16 on poly(ADP-ribosylation) in apoptotic HeLa cells. Carcinogenesis. 1993 Dec;14(12):2559–2564. doi: 10.1093/carcin/14.12.2559. [DOI] [PubMed] [Google Scholar]
  21. Nicholson D. W., Ali A., Thornberry N. A., Vaillancourt J. P., Ding C. K., Gallant M., Gareau Y., Griffin P. R., Labelle M., Lazebnik Y. A. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature. 1995 Jul 6;376(6535):37–43. doi: 10.1038/376037a0. [DOI] [PubMed] [Google Scholar]
  22. Park H. J., Makepeace C. M., Lyons J. C., Song C. W. Effect of intracellular acidity and ionomycin on apoptosis in HL-60 cells. Eur J Cancer. 1996 Mar;32A(3):540–546. doi: 10.1016/0959-8049(95)00606-0. [DOI] [PubMed] [Google Scholar]
  23. Ramage P., Cheneval D., Chvei M., Graff P., Hemmig R., Heng R., Kocher H. P., Mackenzie A., Memmert K., Revesz L. Expression, refolding, and autocatalytic proteolytic processing of the interleukin-1 beta-converting enzyme precursor. J Biol Chem. 1995 Apr 21;270(16):9378–9383. doi: 10.1074/jbc.270.16.9378. [DOI] [PubMed] [Google Scholar]
  24. Sakahira H., Enari M., Nagata S. Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature. 1998 Jan 1;391(6662):96–99. doi: 10.1038/34214. [DOI] [PubMed] [Google Scholar]
  25. Schlegel J., Peters I., Orrenius S., Miller D. K., Thornberry N. A., Yamin T. T., Nicholson D. W. CPP32/apopain is a key interleukin 1 beta converting enzyme-like protease involved in Fas-mediated apoptosis. J Biol Chem. 1996 Jan 26;271(4):1841–1844. doi: 10.1074/jbc.271.4.1841. [DOI] [PubMed] [Google Scholar]
  26. Song C. W., Kim G. E., Lyons J. C., Makepeace C. M., Griffin R. J., Rao G. H., Cragoe E. J., Jr Thermosensitization by increasing intracellular acidity with amiloride and its analogs. Int J Radiat Oncol Biol Phys. 1994 Dec 1;30(5):1161–1169. doi: 10.1016/0360-3016(94)90324-7. [DOI] [PubMed] [Google Scholar]
  27. Song C. W., Lyons J. C., Griffin R. J., Makepeace C. M., Cragoe E. J., Jr Increase in thermosensitivity of tumor cells by lowering intracellular pH. Cancer Res. 1993 Apr 1;53(7):1599–1601. [PubMed] [Google Scholar]
  28. Song Q., Lees-Miller S. P., Kumar S., Zhang Z., Chan D. W., Smith G. C., Jackson S. P., Alnemri E. S., Litwack G., Khanna K. K. DNA-dependent protein kinase catalytic subunit: a target for an ICE-like protease in apoptosis. EMBO J. 1996 Jul 1;15(13):3238–3246. [PMC free article] [PubMed] [Google Scholar]
  29. Takahashi A., Earnshaw W. C. ICE-related proteases in apoptosis. Curr Opin Genet Dev. 1996 Feb;6(1):50–55. doi: 10.1016/s0959-437x(96)90010-6. [DOI] [PubMed] [Google Scholar]
  30. Takasu T., Lyons J. C., Park H. J., Song C. W. Apoptosis and perturbation of cell cycle progression in an acidic environment after hyperthermia. Cancer Res. 1998 Jun 15;58(12):2504–2508. [PubMed] [Google Scholar]
  31. Tannock I. F., Rotin D. Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res. 1989 Aug 15;49(16):4373–4384. [PubMed] [Google Scholar]
  32. Whitacre C. M., Hashimoto H., Tsai M. L., Chatterjee S., Berger S. J., Berger N. A. Involvement of NAD-poly(ADP-ribose) metabolism in p53 regulation and its consequences. Cancer Res. 1995 Sep 1;55(17):3697–3701. [PubMed] [Google Scholar]
  33. Wike-Hooley J. L., Haveman J., Reinhold H. S. The relevance of tumour pH to the treatment of malignant disease. Radiother Oncol. 1984 Dec;2(4):343–366. doi: 10.1016/s0167-8140(84)80077-8. [DOI] [PubMed] [Google Scholar]
  34. Wolf C. M., Reynolds J. E., Morana S. J., Eastman A. The temporal relationship between protein phosphatase, ICE/CED-3 proteases, intracellular acidification, and DNA fragmentation in apoptosis. Exp Cell Res. 1997 Jan 10;230(1):22–27. doi: 10.1006/excr.1996.3401. [DOI] [PubMed] [Google Scholar]
  35. Wolf D., Rotter V. Major deletions in the gene encoding the p53 tumor antigen cause lack of p53 expression in HL-60 cells. Proc Natl Acad Sci U S A. 1985 Feb;82(3):790–794. doi: 10.1073/pnas.82.3.790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Yoshida A., Pourquier P., Pommier Y. Purification and characterization of a Mg2+-dependent endonuclease (AN34) from etoposide-treated human leukemia HL-60 cells undergoing apoptosis. Cancer Res. 1998 Jun 15;58(12):2576–2582. [PubMed] [Google Scholar]
  37. Yoshihara K., Tanigawa Y., Burzio L., Koide S. S. Evidence for adenosine diphosphate ribosylation of Ca2+, Mg2+-dependent endonuclease. Proc Natl Acad Sci U S A. 1975 Jan;72(1):289–293. doi: 10.1073/pnas.72.1.289. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Zanke B. W., Lee C., Arab S., Tannock I. F. Death of tumor cells after intracellular acidification is dependent on stress-activated protein kinases (SAPK/JNK) pathway activation and cannot be inhibited by Bcl-2 expression or interleukin 1beta-converting enzyme inhibition. Cancer Res. 1998 Jul 1;58(13):2801–2808. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES