Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Aug;80(12):1945–1954. doi: 10.1038/sj.bjc.6690624

Induction of haem oxygenase-1 by nitric oxide and ischaemia in experimental solid tumours and implications for tumour growth

K Doi 1,2, T Akaike 1, S Fujii 1, S Tanaka 1,2, N Ikebe 1,2, T Beppu 2, S Shibahara 3, M Ogawa 2, H Maeda 1
PMCID: PMC2363152  PMID: 10471043

Abstract

Induction of haem oxygenase-1 (HO-1) as well as nitric oxide (NO) biosynthesis during tumour growth was investigated in an experimental solid tumour model (AH136B hepatoma) in rats. An immunohistochemical study showed that the inducible isoform of NO synthase (iNOS) was localized in monocyte-derived macrophages, which infiltrated interstitial spaces of solid tumour, but not in the tumour cells. Excessive production of NO in the tumour tissue was unequivocally verified by electron spin resonance spectroscopy. Tumour growth was moderately suppressed by treatment with either Nω-nitro-L-arginine methyl ester (L-NAME) or S-methylisothiourea sulphate (SMT). In contrast, HO-1 was found only in tumour cells, not in macrophages, by in situ hybridization for HO-1 mRNA. HO-1 expression in AH136B cells in culture was strongly enhanced by an NO (NO+) donor S-nitroso-N-acetyl penicillamine. HO-1 mRNA expression in the solid tumour in vivo decreased significantly after treatment with low doses of NOS inhibitors such as L-NAME and SMT (6–20 mg kg−1). However, the level of HO-1 mRNA in the solid tumour treated with higher doses of NOS inhibitor was similar to that of the solid tumour without NOS inhibitor treatment. Strong induction of HO-1 was also observed in solid tumours after occlusion or embolization of the tumour-feeding artery, indicating that ischaemic stress which may involve oxidative stress triggers HO-1 induction in the solid tumour. Lastly, it is of great importance that an HO inhibitor, zinc protoporphyrin IX injected intra-arterially to the solid tumour suppressed the tumour growth to a great extent. In conclusion, HO-1 expression in the solid tumour may confer resistance of tumour cells to hypoxic stress as well as to NO-mediated cytotoxicity. © 1999 Cancer Research Campaign

Keywords: nitric oxide, NO, NO synthase, haem oxygenase-1, tumour growth, vascular permeability, tumour blood flow

Full Text

The Full Text of this article is available as a PDF (642.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akaike T., Inoue K., Okamoto T., Nishino H., Otagiri M., Fujii S., Maeda H. Nanomolar quantification and identification of various nitrosothiols by high performance liquid chromatography coupled with flow reactors of metals and Griess reagent. J Biochem. 1997 Aug;122(2):459–466. doi: 10.1093/oxfordjournals.jbchem.a021774. [DOI] [PubMed] [Google Scholar]
  2. Andrade S. P., Hart I. R., Piper P. J. Inhibitors of nitric oxide synthase selectively reduce flow in tumor-associated neovasculature. Br J Pharmacol. 1992 Dec;107(4):1092–1095. doi: 10.1111/j.1476-5381.1992.tb13412.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bastian N. R., Yim C. Y., Hibbs J. B., Jr, Samlowski W. E. Induction of iron-derived EPR signals in murine cancers by nitric oxide. Evidence for multiple intracellular targets. J Biol Chem. 1994 Feb 18;269(7):5127–5131. [PubMed] [Google Scholar]
  4. Buttery L. D., Springall D. R., Andrade S. P., Riveros-Moreno V., Hart I., Piper P. J., Polak J. M. Induction of nitric oxide synthase in the neo-vasculature of experimental tumours in mice. J Pathol. 1993 Dec;171(4):311–319. doi: 10.1002/path.1711710412. [DOI] [PubMed] [Google Scholar]
  5. Cobbs C. S., Brenman J. E., Aldape K. D., Bredt D. S., Israel M. A. Expression of nitric oxide synthase in human central nervous system tumors. Cancer Res. 1995 Feb 15;55(4):727–730. [PubMed] [Google Scholar]
  6. Doi K., Akaike T., Horie H., Noguchi Y., Fujii S., Beppu T., Ogawa M., Maeda H. Excessive production of nitric oxide in rat solid tumor and its implication in rapid tumor growth. Cancer. 1996 Apr 15;77(8 Suppl):1598–1604. doi: 10.1002/(SICI)1097-0142(19960415)77:8<1598::AID-CNCR27>3.0.CO;2-U. [DOI] [PubMed] [Google Scholar]
  7. Goodman A. I., Choudhury M., da Silva J. L., Jiang S., Abraham N. G. Quantitative measurement of heme oxygenase-1 in the human renal adenocarcinoma. J Cell Biochem. 1996 Dec 1;63(3):342–348. doi: 10.1002/(SICI)1097-4644(19961201)63:3%3C342::AID-JCB9%3E3.0.CO;2-X. [DOI] [PubMed] [Google Scholar]
  8. Hara E., Takahashi K., Tominaga T., Kumabe T., Kayama T., Suzuki H., Fujita H., Yoshimoto T., Shirato K., Shibahara S. Expression of heme oxygenase and inducible nitric oxide synthase mRNA in human brain tumors. Biochem Biophys Res Commun. 1996 Jul 5;224(1):153–158. doi: 10.1006/bbrc.1996.0999. [DOI] [PubMed] [Google Scholar]
  9. Hibbs J. B., Jr, Taintor R. R., Vavrin Z., Rachlin E. M. Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem Biophys Res Commun. 1988 Nov 30;157(1):87–94. doi: 10.1016/s0006-291x(88)80015-9. [DOI] [PubMed] [Google Scholar]
  10. Jenkins D. C., Charles I. G., Thomsen L. L., Moss D. W., Holmes L. S., Baylis S. A., Rhodes P., Westmore K., Emson P. C., Moncada S. Roles of nitric oxide in tumor growth. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4392–4396. doi: 10.1073/pnas.92.10.4392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kim Y. M., Bergonia H. A., Müller C., Pitt B. R., Watkins W. D., Lancaster J. R., Jr Loss and degradation of enzyme-bound heme induced by cellular nitric oxide synthesis. J Biol Chem. 1995 Mar 17;270(11):5710–5713. doi: 10.1074/jbc.270.11.5710. [DOI] [PubMed] [Google Scholar]
  12. Kim Y. M., Bergonia H., Lancaster J. R., Jr Nitrogen oxide-induced autoprotection in isolated rat hepatocytes. FEBS Lett. 1995 Oct 30;374(2):228–232. doi: 10.1016/0014-5793(95)01115-u. [DOI] [PubMed] [Google Scholar]
  13. Lala P. K., Orucevic A. Role of nitric oxide in tumor progression: lessons from experimental tumors. Cancer Metastasis Rev. 1998 Mar;17(1):91–106. doi: 10.1023/a:1005960822365. [DOI] [PubMed] [Google Scholar]
  14. Lee T. C., Ho I. C. Expression of heme oxygenase in arsenic-resistant human lung adenocarcinoma cells. Cancer Res. 1994 Apr 1;54(7):1660–1664. [PubMed] [Google Scholar]
  15. Leibovich S. J., Polverini P. J., Fong T. W., Harlow L. A., Koch A. E. Production of angiogenic activity by human monocytes requires an L-arginine/nitric oxide-synthase-dependent effector mechanism. Proc Natl Acad Sci U S A. 1994 May 10;91(10):4190–4194. doi: 10.1073/pnas.91.10.4190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lepoivre M., Flaman J. M., Bobé P., Lemaire G., Henry Y. Quenching of the tyrosyl free radical of ribonucleotide reductase by nitric oxide. Relationship to cytostasis induced in tumor cells by cytotoxic macrophages. J Biol Chem. 1994 Aug 26;269(34):21891–21897. [PubMed] [Google Scholar]
  17. Maeda H., Noguchi Y., Sato K., Akaike T. Enhanced vascular permeability in solid tumor is mediated by nitric oxide and inhibited by both new nitric oxide scavenger and nitric oxide synthase inhibitor. Jpn J Cancer Res. 1994 Apr;85(4):331–334. doi: 10.1111/j.1349-7006.1994.tb02362.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Maines M. D., Kappas A. Cobalt induction of hepatic heme oxygenase; with evidence that cytochrome P-450 is not essential for this enzyme activity. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4293–4297. doi: 10.1073/pnas.71.11.4293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Maines M. D., Kappas A. Prematurely evoked synthesis and induction of delta-aminolevulinate synthetase in neonatal liver. Evidence for metal ion repression of enzyme formation. J Biol Chem. 1978 Apr 10;253(7):2321–2326. [PubMed] [Google Scholar]
  20. Maines M. D. The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol. 1997;37:517–554. doi: 10.1146/annurev.pharmtox.37.1.517. [DOI] [PubMed] [Google Scholar]
  21. Maines M. D. Zinc . protoporphyrin is a selective inhibitor of heme oxygenase activity in the neonatal rat. Biochim Biophys Acta. 1981 Mar 18;673(3):339–350. doi: 10.1016/0304-4165(81)90465-7. [DOI] [PubMed] [Google Scholar]
  22. Matsumura Y., Kimura M., Yamamoto T., Maeda H. Involvement of the kinin-generating cascade in enhanced vascular permeability in tumor tissue. Jpn J Cancer Res. 1988 Dec;79(12):1327–1334. doi: 10.1111/j.1349-7006.1988.tb01563.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Moncada S., Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med. 1993 Dec 30;329(27):2002–2012. doi: 10.1056/NEJM199312303292706. [DOI] [PubMed] [Google Scholar]
  24. Nakano S., Matsukado K., Black K. L. Increased brain tumor microvessel permeability after intracarotid bradykinin infusion is mediated by nitric oxide. Cancer Res. 1996 Sep 1;56(17):4027–4031. [PubMed] [Google Scholar]
  25. Okamoto T., Akaike T., Nagano T., Miyajima S., Suga M., Ando M., Ichimori K., Maeda H. Activation of human neutrophil procollagenase by nitrogen dioxide and peroxynitrite: a novel mechanism for procollagenase activation involving nitric oxide. Arch Biochem Biophys. 1997 Jun 15;342(2):261–274. doi: 10.1006/abbi.1997.0127. [DOI] [PubMed] [Google Scholar]
  26. Prabhakar N. R., Dinerman J. L., Agani F. H., Snyder S. H. Carbon monoxide: a role in carotid body chemoreception. Proc Natl Acad Sci U S A. 1995 Mar 14;92(6):1994–1997. doi: 10.1073/pnas.92.6.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Setoguchi K., Takeya M., Akaike T., Suga M., Hattori R., Maeda H., Ando M., Takahashi K. Expression of inducible nitric oxide synthase and its involvement in pulmonary granulomatous inflammation in rats. Am J Pathol. 1996 Dec;149(6):2005–2022. [PMC free article] [PubMed] [Google Scholar]
  28. Shibahara S., Müller R., Taguchi H., Yoshida T. Cloning and expression of cDNA for rat heme oxygenase. Proc Natl Acad Sci U S A. 1985 Dec;82(23):7865–7869. doi: 10.1073/pnas.82.23.7865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Stocker R., Yamamoto Y., McDonagh A. F., Glazer A. N., Ames B. N. Bilirubin is an antioxidant of possible physiological importance. Science. 1987 Feb 27;235(4792):1043–1046. doi: 10.1126/science.3029864. [DOI] [PubMed] [Google Scholar]
  30. Stuehr D. J., Griffith O. W. Mammalian nitric oxide synthases. Adv Enzymol Relat Areas Mol Biol. 1992;65:287–346. doi: 10.1002/9780470123119.ch8. [DOI] [PubMed] [Google Scholar]
  31. Suematsu M., Goda N., Sano T., Kashiwagi S., Egawa T., Shinoda Y., Ishimura Y. Carbon monoxide: an endogenous modulator of sinusoidal tone in the perfused rat liver. J Clin Invest. 1995 Nov;96(5):2431–2437. doi: 10.1172/JCI118300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Suzuki K., Hayashi N., Miyamoto Y., Yamamoto M., Ohkawa K., Ito Y., Sasaki Y., Yamaguchi Y., Nakase H., Noda K. Expression of vascular permeability factor/vascular endothelial growth factor in human hepatocellular carcinoma. Cancer Res. 1996 Jul 1;56(13):3004–3009. [PubMed] [Google Scholar]
  33. Takahashi K., Hara E., Suzuki H., Sasano H., Shibahara S. Expression of heme oxygenase isozyme mRNAs in the human brain and induction of heme oxygenase-1 by nitric oxide donors. J Neurochem. 1996 Aug;67(2):482–489. doi: 10.1046/j.1471-4159.1996.67020482.x. [DOI] [PubMed] [Google Scholar]
  34. Takeda A., Onodera H., Sugimoto A., Itoyama Y., Kogure K., Shibahara S. Increased expression of heme oxygenase mRNA in rat brain following transient forebrain ischemia. Brain Res. 1994 Dec 12;666(1):120–124. doi: 10.1016/0006-8993(94)90292-5. [DOI] [PubMed] [Google Scholar]
  35. Takeya M., Hsiao L., Takahashi K. A new monoclonal antibody, TRPM-3, binds specifically to certain rat macrophage populations: immunohistochemical and immunoelectron microscopic analysis. J Leukoc Biol. 1987 Mar;41(3):187–195. doi: 10.1002/jlb.41.3.187. [DOI] [PubMed] [Google Scholar]
  36. Tenhunen R., Marver H. S., Schmid R. The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc Natl Acad Sci U S A. 1968 Oct;61(2):748–755. doi: 10.1073/pnas.61.2.748. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Thomsen L. L., Lawton F. G., Knowles R. G., Beesley J. E., Riveros-Moreno V., Moncada S. Nitric oxide synthase activity in human gynecological cancer. Cancer Res. 1994 Mar 1;54(5):1352–1354. [PubMed] [Google Scholar]
  38. Thomsen L. L., Scott J. M., Topley P., Knowles R. G., Keerie A. J., Frend A. J. Selective inhibition of inducible nitric oxide synthase inhibits tumor growth in vivo: studies with 1400W, a novel inhibitor. Cancer Res. 1997 Aug 1;57(15):3300–3304. [PubMed] [Google Scholar]
  39. Tozer G. M., Prise V. E., Bell K. M. The influence of nitric oxide on tumour vascular tone. Acta Oncol. 1995;34(3):373–377. doi: 10.3109/02841869509093992. [DOI] [PubMed] [Google Scholar]
  40. Tozer G. M., Prise V. E., Chaplin D. J. Inhibition of nitric oxide synthase induces a selective reduction in tumor blood flow that is reversible with L-arginine. Cancer Res. 1997 Mar 1;57(5):948–955. [PubMed] [Google Scholar]
  41. Vaupel P., Kallinowski F., Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 1989 Dec 1;49(23):6449–6465. [PubMed] [Google Scholar]
  42. Wood P. J., Sansom J. M., Butler S. A., Stratford I. J., Cole S. M., Szabo C., Thiemermann C., Adams G. E. Induction of hypoxia in experimental murine tumors by the nitric oxide synthase inhibitor, NG-nitro-L-arginine. Cancer Res. 1994 Dec 15;54(24):6458–6463. [PubMed] [Google Scholar]
  43. Wu J., Akaike T., Maeda H. Modulation of enhanced vascular permeability in tumors by a bradykinin antagonist, a cyclooxygenase inhibitor, and a nitric oxide scavenger. Cancer Res. 1998 Jan 1;58(1):159–165. [PubMed] [Google Scholar]
  44. Yamasaki K., Konno T., Miyauchi Y., Maeda H. Reduction of hepatic metastases in rabbits by administration of an oily anticancer agent into the portal vein. Cancer Res. 1987 Feb 1;47(3):852–855. [PubMed] [Google Scholar]
  45. Yet S. F., Pellacani A., Patterson C., Tan L., Folta S. C., Foster L., Lee W. S., Hsieh C. M., Perrella M. A. Induction of heme oxygenase-1 expression in vascular smooth muscle cells. A link to endotoxic shock. J Biol Chem. 1997 Feb 14;272(7):4295–4301. doi: 10.1074/jbc.272.7.4295. [DOI] [PubMed] [Google Scholar]
  46. Yoshimura T., Yokoyama H., Fujii S., Takayama F., Oikawa K., Kamada H. In vivo EPR detection and imaging of endogenous nitric oxide in lipopolysaccharide-treated mice. Nat Biotechnol. 1996 Aug;14(8):992–994. doi: 10.1038/nbt0896-992. [DOI] [PubMed] [Google Scholar]
  47. Ziche M., Morbidelli L., Choudhuri R., Zhang H. T., Donnini S., Granger H. J., Bicknell R. Nitric oxide synthase lies downstream from vascular endothelial growth factor-induced but not basic fibroblast growth factor-induced angiogenesis. J Clin Invest. 1997 Jun 1;99(11):2625–2634. doi: 10.1172/JCI119451. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES