Abstract
The potential use of unsubstituted aluminium phthalocyanine (AlClPc) as a sensitizer for photodynamic therapy (PDT) of cancer has not been fully exploited in spite of its higher efficiency as compared to the sulphonated derivatives. This is largely due to the strong hydrophobic character of AlClPc which renders the material difficult to formulate for in vivo administration. We prepared two water-soluble derivatives of AlClPc by axial coordination of polyethyleneglycol (PEG, MW 2000) or polyvinylalcohol (PVA, MW 13 000–23 000) to the central aluminium ion. Their photodynamic activities were evaluated in vitro against the EMT-6 mouse mammary tumour cells and in vivo against the EMT-6 and the colon carcinoma Colo-26 tumours implanted intradermally in Balb/c mice. Pharmacokinetics were studied in the EMT-6 tumour-bearing mice. After 1 h incubation, the light dose required to kill 90% of cells (LD90) was at least three times less for AlClPc (Cremophor emulsion) as compared to AlPc–PEG and AlPc–PVA, while after 24 h incubation all three preparations were highly phototoxic. All three dye preparations induced complete EMT-6 tumour regression in 75–100% of animals at a low drug dose (0.25 μmol kg−1) following PDT (400 J cm−2, 650–700 nm) at 24 h pi. Complete tumour regression in the Colo-26 tumour model was obtained in 30% of mice at a dose of 2 μmol kg−1. In the non-cured animals, AlPc–PVA induced the most significant tumour growth delay. This dye showed a prolonged plasma half-life (6.8 h) as compared to AlClPc (2.6 h) and AlPc–PEG (23 min), lower retention by liver and spleen and higher tumour-to-skin and tumour-to-muscle ratios. Our data demonstrate that addition of hydrophilic axial ligands to AlPc, while modifying in vitro and in vivo kinetics, does not reduce the PDT efficiency of the parent molecule. Moreover, in the case of the polyvinylalcohol derivative, axial coordination confers advantageous pharmacokinetics to AlPc, which makes this photosensitizer a valuable, water soluble candidate drug for clinical PDT of cancer. © 1999 Cancer Research Campaign
Keywords: Colo-26 tumour, EMT-6 tumour, aluminium phthalocyanine, photodynamic therapy, polyethyleneglycol, polyvinylalcohol
Full Text
The Full Text of this article is available as a PDF (151.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allémann E., Brasseur N., Kudrevich S. V., La Madeleine C., van Lier J. E. Photodynamic activities and biodistribution of fluorinated zinc phthalocyanine derivatives in the murine EMT-6 tumour model. Int J Cancer. 1997 Jul 17;72(2):289–294. doi: 10.1002/(sici)1097-0215(19970717)72:2<289::aid-ijc15>3.0.co;2-b. [DOI] [PubMed] [Google Scholar]
- Bellemo C., Jori G., Rihter B. D., Kenney M. E., Rodgers M. A. Si(IV)-naphthalocyanine: modulation of its pharmacokinetic properties through the use of hydrophilic axial ligands. Cancer Lett. 1992 Aug 14;65(2):145–150. doi: 10.1016/0304-3835(92)90159-s. [DOI] [PubMed] [Google Scholar]
- Ben-Hur E., Rosenthal I. Photosensitization of Chinese hamster cells by water-soluble phthalocyanines. Photochem Photobiol. 1986 Jun;43(6):615–619. doi: 10.1111/j.1751-1097.1986.tb05636.x. [DOI] [PubMed] [Google Scholar]
- Berg K., Bommer J. C., Moan J. Evaluation of sulfonated aluminum phthalocyanines for use in photochemotherapy. A study on the relative efficiencies of photoinactivation. Photochem Photobiol. 1989 May;49(5):587–594. doi: 10.1111/j.1751-1097.1989.tb08428.x. [DOI] [PubMed] [Google Scholar]
- Brasseur N., Ali H., Langlois R., van Lier J. E. Biological activities of phthalocyanines--IX. Photosensitization of V-79 Chinese hamster cells and EMT-6 mouse mammary tumor by selectively sulfonated zinc phthalocyanines. Photochem Photobiol. 1988 May;47(5):705–711. doi: 10.1111/j.1751-1097.1988.tb02768.x. [DOI] [PubMed] [Google Scholar]
- Brasseur N., Ali H., Langlois R., van Lier J. E. Biological activities of phthalocyanines--VII. Photoinactivation of V-79 Chinese hamster cells by selectively sulfonated gallium phthalocyanines. Photochem Photobiol. 1987 Nov;46(5):739–744. doi: 10.1111/j.1751-1097.1987.tb04841.x. [DOI] [PubMed] [Google Scholar]
- Brasseur N., Lewis K., Rousseau J., van Lier J. E. Measurement of tumor vascular damage in mice with 99mTc-MIBI following photodynamic therapy. Photochem Photobiol. 1996 Oct;64(4):702–706. doi: 10.1111/j.1751-1097.1996.tb03127.x. [DOI] [PubMed] [Google Scholar]
- Brasseur N., Nguyen T. L., Langlois R., Ouellet R., Marengo S., Houde D., van Lier J. E. Synthesis and photodynamic activities of silicon 2,3-naphthalocyanine derivatives. J Med Chem. 1994 Feb 4;37(3):415–420. doi: 10.1021/jm00029a014. [DOI] [PubMed] [Google Scholar]
- Chan W. S., Brasseur N., La Madeleine C., Ouellet R., van Lier J. E. Efficacy and mechanism of aluminium phthalocyanine and its sulphonated derivatives mediated photodynamic therapy on murine tumours. Eur J Cancer. 1997 Oct;33(11):1855–1859. doi: 10.1016/s0959-8049(97)00220-7. [DOI] [PubMed] [Google Scholar]
- Chan W. S., Brasseur N., La Madeleine C., van Lier J. E. Evidence for different mechanisms of EMT-6 tumor necrosis by photodynamic therapy with disulfonated aluminum phthalocyanine or photofrin: tumor cell survival and blood flow. Anticancer Res. 1996 Jul-Aug;16(4A):1887–1892. [PubMed] [Google Scholar]
- Chan W. S., Marshall J. F., Svensen R., Bedwell J., Hart I. R. Effect of sulfonation on the cell and tissue distribution of the photosensitizer aluminum phthalocyanine. Cancer Res. 1990 Aug 1;50(15):4533–4538. [PubMed] [Google Scholar]
- Chan W. S., Marshall J. F., Svensen R., Phillips D., Hart I. R. Photosensitising activity of phthalocyanine dyes screened against tissue culture cells. Photochem Photobiol. 1987 Jun;45(6):757–761. doi: 10.1111/j.1751-1097.1987.tb07878.x. [DOI] [PubMed] [Google Scholar]
- Chan W. S., West C. M., Moore J. V., Hart I. R. Photocytotoxic efficacy of sulphonated species of aluminium phthalocyanine against cell monolayers, multicellular spheroids and in vivo tumours. Br J Cancer. 1991 Nov;64(5):827–832. doi: 10.1038/bjc.1991.408. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cuomo V., Jori G., Rihter B., Kenney M. E., Rodgers M. A. Liposome-delivered Si(IV)-naphthalocyanine as a photodynamic sensitiser for experimental tumours: pharmacokinetic and phototherapeutic studies. Br J Cancer. 1990 Dec;62(6):966–970. doi: 10.1038/bjc.1990.418. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davis N., Liu D., Jain A. K., Jiang S. Y., Jiang F., Richter A., Levy J. G. Modified polyvinyl alcohol-benzoporphyrin derivative conjugates as phototoxic agents. Photochem Photobiol. 1993 Apr;57(4):641–647. doi: 10.1111/j.1751-1097.1993.tb02930.x. [DOI] [PubMed] [Google Scholar]
- Daziano J. P., Steenken S., Chabannon C., Mannoni P., Chanon M., Julliard M. Photophysical and redox properties of a series of phthalocyanines: relation with their photodynamic activities on TF-1 and Daudi leukemic cells. Photochem Photobiol. 1996 Oct;64(4):712–719. doi: 10.1111/j.1751-1097.1996.tb03129.x. [DOI] [PubMed] [Google Scholar]
- Dye D., Watkins J. Suspected anaphylactic reaction to Cremophor EL. Br Med J. 1980 Jun 7;280(6228):1353–1353. doi: 10.1136/bmj.280.6228.1353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henderson B. W., Waldow S. M., Mang T. S., Potter W. R., Malone P. B., Dougherty T. J. Tumor destruction and kinetics of tumor cell death in two experimental mouse tumors following photodynamic therapy. Cancer Res. 1985 Feb;45(2):572–576. [PubMed] [Google Scholar]
- Hu M., Brasseur N., Yildiz S. Z., van Lier J. E., Leznoff C. C. Hydroxyphthalocyanines as potential photodynamic agents for cancer therapy. J Med Chem. 1998 May 21;41(11):1789–1802. doi: 10.1021/jm970336s. [DOI] [PubMed] [Google Scholar]
- Isele U., Schieweck K., Kessler R., van Hoogevest P., Capraro H. G. Pharmacokinetics and body distribution of liposomal zinc phthalocyanine in tumor-bearing mice: influence of aggregation state, particle size, and composition. J Pharm Sci. 1995 Feb;84(2):166–173. doi: 10.1002/jps.2600840209. [DOI] [PubMed] [Google Scholar]
- Jiang F. N., Jiang S., Liu D., Richter A., Levy J. G. Development of technology for linking photosensitizers to a model monoclonal antibody. J Immunol Methods. 1990 Nov 6;134(1):139–149. doi: 10.1016/0022-1759(90)90122-c. [DOI] [PubMed] [Google Scholar]
- Krinick N. L., Sun Y., Joyner D., Spikes J. D., Straight R. C., Kopecek J. A polymeric drug delivery system for the simultaneous delivery of drugs activatable by enzymes and/or light. J Biomater Sci Polym Ed. 1994;5(4):303–324. doi: 10.1163/156856294x00040. [DOI] [PubMed] [Google Scholar]
- Larroque C., Pelegrin A., Van Lier J. E. Serum albumin as a vehicle for zinc phthalocyanine: photodynamic activities in solid tumour models. Br J Cancer. 1996 Dec;74(12):1886–1890. doi: 10.1038/bjc.1996.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Margaron P., Grégoire M. J., Scasnár V., Ali H., van Lier J. E. Structure-photodynamic activity relationships of a series of 4-substituted zinc phthalocyanines. Photochem Photobiol. 1996 Feb;63(2):217–223. doi: 10.1111/j.1751-1097.1996.tb03017.x. [DOI] [PubMed] [Google Scholar]
- Margaron P., Madarnas P., Quellet R., Van Lier J. E. Biological activities of phthalocyanines. XVII histopathologic evidence for different mechanisms of EMT-6 tumor necrosis induced by photodynamic therapy with disulfonated aluminum phthalocyanine or photofrin. Anticancer Res. 1996 Mar-Apr;16(2):613–620. [PubMed] [Google Scholar]
- Morlet L., Vonarx V., Foultier M. T., Gouyette A., Stewart C., Lenz P., Patrice T. In vitro and in vivo spectrofluorometry of a water-soluble meta-(tetrahydroxyphenyl)chlorin (m-THPC) derivative. J Photochem Photobiol B. 1997 Jul;39(3):249–257. doi: 10.1016/s1011-1344(96)07467-2. [DOI] [PubMed] [Google Scholar]
- Ochsner M. Photophysical and photobiological processes in the photodynamic therapy of tumours. J Photochem Photobiol B. 1997 May;39(1):1–18. doi: 10.1016/s1011-1344(96)07428-3. [DOI] [PubMed] [Google Scholar]
- Paquette B., Ali H., Langlois R., van Lier J. E. Biological activities of phthalocyanines--VIII. Cellular distribution in V-79 Chinese hamster cells and phototoxicity of selectively sulfonated aluminum phthalocyanines. Photochem Photobiol. 1988 Feb;47(2):215–220. doi: 10.1111/j.1751-1097.1988.tb02717.x. [DOI] [PubMed] [Google Scholar]
- Pomer S., Grashev G., Sinn H., Kälble T., Staehler G. Laser-induced fluorescence diagnosis and photodynamic therapy of human renal cell carcinoma. Urol Int. 1995;55(4):197–201. doi: 10.1159/000282785. [DOI] [PubMed] [Google Scholar]
- Rasch M. H., Tijssen K., VanSteveninck J., Dubbelman T. M. Synergistic interaction of photodynamic treatment with the sensitizer aluminum phthalocyanine and hyperthermia on loss of clonogenicity of CHO cells. Photochem Photobiol. 1996 Sep;64(3):586–593. doi: 10.1111/j.1751-1097.1996.tb03109.x. [DOI] [PubMed] [Google Scholar]
- Roberts W. G., Smith K. M., McCullough J. L., Berns M. W. Skin photosensitivity and photodestruction of several potential photodynamic sensitizers. Photochem Photobiol. 1989 Apr;49(4):431–438. doi: 10.1111/j.1751-1097.1989.tb09191.x. [DOI] [PubMed] [Google Scholar]
- Rosenthal I. Phthalocyanines as photodynamic sensitizers. Photochem Photobiol. 1991 Jun;53(6):859–870. doi: 10.1111/j.1751-1097.1991.tb09900.x. [DOI] [PubMed] [Google Scholar]
- Soukos N. S., Hamblin M. R., Hasan T. The effect of charge on cellular uptake and phototoxicity of polylysine chlorin(e6) conjugates. Photochem Photobiol. 1997 Apr;65(4):723–729. doi: 10.1111/j.1751-1097.1997.tb01916.x. [DOI] [PubMed] [Google Scholar]
- Spikes J. D. Phthalocyanines as photosensitizers in biological systems and for the photodynamic therapy of tumors. Photochem Photobiol. 1986 Jun;43(6):691–699. doi: 10.1111/j.1751-1097.1986.tb05648.x. [DOI] [PubMed] [Google Scholar]
- Svaasand L. O. Optical dosimetry for direct and interstitial photoradiation therapy of malignant tumors. Prog Clin Biol Res. 1984;170:91–114. [PubMed] [Google Scholar]
- Tada H., Shiho O., Kuroshima K., Koyama M., Tsukamoto K. An improved colorimetric assay for interleukin 2. J Immunol Methods. 1986 Nov 6;93(2):157–165. doi: 10.1016/0022-1759(86)90183-3. [DOI] [PubMed] [Google Scholar]
- Tralau C. J., Young A. R., Walker N. P., Vernon D. I., MacRobert A. J., Brown S. B., Bown S. G. Mouse skin photosensitivity with dihaematoporphyrin ether (DHE) and aluminium sulphonated phthalocyanine (AlSPc): a comparative study. Photochem Photobiol. 1989 Mar;49(3):305–312. doi: 10.1111/j.1751-1097.1989.tb04111.x. [DOI] [PubMed] [Google Scholar]
- Tsuruo T., Yamori T., Naganuma K., Tsukagoshi S., Sakurai Y. Characterization of metastatic clones derived from a metastatic variant of mouse colon adenocarcinoma 26. Cancer Res. 1983 Nov;43(11):5437–5442. [PubMed] [Google Scholar]
- Woodburn K., Chang C. K., Lee S., Henderson B., Kessel D. Biodistribution and PDT efficacy of a ketochlorin photosensitizer as a function of the delivery vehicle. Photochem Photobiol. 1994 Aug;60(2):154–159. doi: 10.1111/j.1751-1097.1994.tb05083.x. [DOI] [PubMed] [Google Scholar]
- Wulff G., Röhle G. Results and problems of O-Glycoside synthesis. Angew Chem Int Ed Engl. 1974 Mar;13(3):157–170. doi: 10.1002/anie.197401571. [DOI] [PubMed] [Google Scholar]
- Yamaoka T., Tabata Y., Ikada Y. Distribution and tissue uptake of poly(ethylene glycol) with different molecular weights after intravenous administration to mice. J Pharm Sci. 1994 Apr;83(4):601–606. doi: 10.1002/jps.2600830432. [DOI] [PubMed] [Google Scholar]