Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Dec 8;82(1):28–33. doi: 10.1054/bjoc.1999.0872

Inhibition of I κ B-α phosphorylation at serine and tyrosine acts independently on sensitization to DNA damaging agents in human glioma cells

J Miyakoshi 1, K Yagi 2
PMCID: PMC2363178  PMID: 10638962

Abstract

Molecular mechanisms and/or intrinsic factors controlling cellular radiosensitivity are not fully understood in mammalian cells. The recent studies have suggested that nuclear factor κB (NF-κB) is one of such factors. The activation and regulation of NF-κB are tightly controlled by IκB-α, a cellular inhibitory protein of NF-κB. Most importantly, phosphorylation regulates activity of the inhibitor IκB-α, which sequesters NF-κB in the cytosol. Two different pathways for the phosphorylation of IκB-α are demonstrated, such as serine (at residues 32 and 36) and tyrosine (at residue 42) phosphorylations. To assess a role of the transcription factor, NF-κB, on cellular sensitivity to DNA damaging agents, we constructed three different types of expression plasmids, i.e. S-IκB (mutations at residues 32 and 36), Y-IκB (mutation at residue 42) and SY-IκB (mutations at residues 32, 36 and 42). The cell clones expressing S-IκB and Y-IκB proteins became sensitive to X-rays as compared with the parental and vector-transfected cells. The cell clones expressing SY-IκB were further radiosensitive. By the treatment with herbimycin A, an inhibitor of phosphorylation, the X-ray sensitivity of cells expressing SY-IκB did not change, while that of the cells expressing S-IκB and Y-IκB and the parental cells was enhanced. Change in the sensitivity to adriamycin and UV in those clones was very similar to that in the X-ray sensitivity. The inhibition of IκB-α phosphorylation at serine and tyrosine acts independently on the sensitization to X-rays, adriamycin and UV. These findings suggest that the transcriptional activation induced by NF-κB may play a role in the DNA damage repair. The present study proposes a possibility that the inactivation of NF-κB by inhibition of both serine and tyrosine phosphorylations may be useful for the treatment of cancer in radio- and chemotherapies. © 2000 Cancer Research Campaign

Keywords: IκB-α, NF-κB, phosphorylation, DNA damaging agents, human glioma cells

Full Text

The Full Text of this article is available as a PDF (101.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alkalay I., Yaron A., Hatzubai A., Orian A., Ciechanover A., Ben-Neriah Y. Stimulation-dependent I kappa B alpha phosphorylation marks the NF-kappa B inhibitor for degradation via the ubiquitin-proteasome pathway. Proc Natl Acad Sci U S A. 1995 Nov 7;92(23):10599–10603. doi: 10.1073/pnas.92.23.10599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Baeuerle P. A., Baltimore D. I kappa B: a specific inhibitor of the NF-kappa B transcription factor. Science. 1988 Oct 28;242(4878):540–546. doi: 10.1126/science.3140380. [DOI] [PubMed] [Google Scholar]
  3. Baeuerle P. A., Henkel T. Function and activation of NF-kappa B in the immune system. Annu Rev Immunol. 1994;12:141–179. doi: 10.1146/annurev.iy.12.040194.001041. [DOI] [PubMed] [Google Scholar]
  4. Baeuerle P. A. The inducible transcription activator NF-kappa B: regulation by distinct protein subunits. Biochim Biophys Acta. 1991 Apr 16;1072(1):63–80. doi: 10.1016/0304-419x(91)90007-8. [DOI] [PubMed] [Google Scholar]
  5. Beg A. A., Ruben S. M., Scheinman R. I., Haskill S., Rosen C. A., Baldwin A. S., Jr I kappa B interacts with the nuclear localization sequences of the subunits of NF-kappa B: a mechanism for cytoplasmic retention. Genes Dev. 1992 Oct;6(10):1899–1913. doi: 10.1101/gad.6.10.1899. [DOI] [PubMed] [Google Scholar]
  6. Brockman J. A., Scherer D. C., McKinsey T. A., Hall S. M., Qi X., Lee W. Y., Ballard D. W. Coupling of a signal response domain in I kappa B alpha to multiple pathways for NF-kappa B activation. Mol Cell Biol. 1995 May;15(5):2809–2818. doi: 10.1128/mcb.15.5.2809. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brown K., Gerstberger S., Carlson L., Franzoso G., Siebenlist U. Control of I kappa B-alpha proteolysis by site-specific, signal-induced phosphorylation. Science. 1995 Mar 10;267(5203):1485–1488. doi: 10.1126/science.7878466. [DOI] [PubMed] [Google Scholar]
  8. Brown K., Park S., Kanno T., Franzoso G., Siebenlist U. Mutual regulation of the transcriptional activator NF-kappa B and its inhibitor, I kappa B-alpha. Proc Natl Acad Sci U S A. 1993 Mar 15;90(6):2532–2536. doi: 10.1073/pnas.90.6.2532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cordle S. R., Donald R., Read M. A., Hawiger J. Lipopolysaccharide induces phosphorylation of MAD3 and activation of c-Rel and related NF-kappa B proteins in human monocytic THP-1 cells. J Biol Chem. 1993 Jun 5;268(16):11803–11810. [PubMed] [Google Scholar]
  10. Hallahan D. E., Sukhatme V. P., Sherman M. L., Virudachalam S., Kufe D., Weichselbaum R. R. Protein kinase C mediates x-ray inducibility of nuclear signal transducers EGR1 and JUN. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2156–2160. doi: 10.1073/pnas.88.6.2156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Imbert V., Rupec R. A., Livolsi A., Pahl H. L., Traenckner E. B., Mueller-Dieckmann C., Farahifar D., Rossi B., Auberger P., Baeuerle P. A. Tyrosine phosphorylation of I kappa B-alpha activates NF-kappa B without proteolytic degradation of I kappa B-alpha. Cell. 1996 Sep 6;86(5):787–798. doi: 10.1016/s0092-8674(00)80153-1. [DOI] [PubMed] [Google Scholar]
  12. Iwasaki T., Uehara Y., Graves L., Rachie N., Bomsztyk K. Herbimycin A blocks IL-1-induced NF-kappa B DNA-binding activity in lymphoid cell lines. FEBS Lett. 1992 Feb 24;298(2-3):240–244. doi: 10.1016/0014-5793(92)80067-q. [DOI] [PubMed] [Google Scholar]
  13. Jung M., Zhang Y., Lee S., Dritschilo A. Correction of radiation sensitivity in ataxia telangiectasia cells by a truncated I kappa B-alpha. Science. 1995 Jun 16;268(5217):1619–1621. doi: 10.1126/science.7777860. [DOI] [PubMed] [Google Scholar]
  14. Kasid U., Pfeifer A., Brennan T., Beckett M., Weichselbaum R. R., Dritschilo A., Mark G. E. Effect of antisense c-raf-1 on tumorigenicity and radiation sensitivity of a human squamous carcinoma. Science. 1989 Mar 10;243(4896):1354–1356. doi: 10.1126/science.2466340. [DOI] [PubMed] [Google Scholar]
  15. Mellits K. H., Hay R. T., Goodbourn S. Proteolytic degradation of MAD3 (I kappa B alpha) and enhanced processing of the NF-kappa B precursor p105 are obligatory steps in the activation of NF-kappa B. Nucleic Acids Res. 1993 Nov 11;21(22):5059–5066. doi: 10.1093/nar/21.22.5059. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Miyakoshi J., Kitagawa K., Yamagishi N., Ohtsu S., Day R. S., 3rd, Takebe H. Increased radiosensitivity of p16 gene-deleted human glioma cells after transfection with wild-type p16 gene. Jpn J Cancer Res. 1997 Jan;88(1):34–38. doi: 10.1111/j.1349-7006.1997.tb00298.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Miyakoshi J., Yamagishi N., Ohtsu S., Mohri K., Takebe H. Increase in hypoxanthine-guanine phosphoribosyl transferase gene mutations by exposure to high-density 50-Hz magnetic fields. Mutat Res. 1996 Jan 17;349(1):109–114. doi: 10.1016/0027-5107(95)00166-2. [DOI] [PubMed] [Google Scholar]
  18. Miyakoshi J., Yamagishi N., Ohtsu S., Takebe H. Changes in radiation sensitivity of human osteosarcoma cells after p53 introduction. Jpn J Cancer Res. 1995 Aug;86(8):711–713. doi: 10.1111/j.1349-7006.1995.tb02457.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mohan N., Meltz M. L. Induction of nuclear factor kappa B after low-dose ionizing radiation involves a reactive oxygen intermediate signaling pathway. Radiat Res. 1994 Oct;140(1):97–104. [PubMed] [Google Scholar]
  20. Pirollo K. F., Tong Y. A., Villegas Z., Chen Y., Chang E. H. Oncogene- transformed NIH 3T3 cells display radiation resistance levels indicative of a signal transduction pathway leading to the radiation-resistant phenotype. Radiat Res. 1993 Aug;135(2):234–243. [PubMed] [Google Scholar]
  21. Scherer D. C., Brockman J. A., Chen Z., Maniatis T., Ballard D. W. Signal-induced degradation of I kappa B alpha requires site-specific ubiquitination. Proc Natl Acad Sci U S A. 1995 Nov 21;92(24):11259–11263. doi: 10.1073/pnas.92.24.11259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schreiber E., Matthias P., Müller M. M., Schaffner W. Rapid detection of octamer binding proteins with 'mini-extracts', prepared from a small number of cells. Nucleic Acids Res. 1989 Aug 11;17(15):6419–6419. doi: 10.1093/nar/17.15.6419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sklar M. D. The ras oncogenes increase the intrinsic resistance of NIH 3T3 cells to ionizing radiation. Science. 1988 Feb 5;239(4840):645–647. doi: 10.1126/science.3277276. [DOI] [PubMed] [Google Scholar]
  24. Traenckner E. B., Pahl H. L., Henkel T., Schmidt K. N., Wilk S., Baeuerle P. A. Phosphorylation of human I kappa B-alpha on serines 32 and 36 controls I kappa B-alpha proteolysis and NF-kappa B activation in response to diverse stimuli. EMBO J. 1995 Jun 15;14(12):2876–2883. doi: 10.1002/j.1460-2075.1995.tb07287.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Uckun F. M., Schieven G. L., Tuel-Ahlgren L. M., Dibirdik I., Myers D. E., Ledbetter J. A., Song C. W. Tyrosine phosphorylation is a mandatory proximal step in radiation-induced activation of the protein kinase C signaling pathway in human B-lymphocyte precursors. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):252–256. doi: 10.1073/pnas.90.1.252. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Verma I. M., Stevenson J. K., Schwarz E. M., Van Antwerp D., Miyamoto S. Rel/NF-kappa B/I kappa B family: intimate tales of association and dissociation. Genes Dev. 1995 Nov 15;9(22):2723–2735. doi: 10.1101/gad.9.22.2723. [DOI] [PubMed] [Google Scholar]
  27. Wang C. Y., Mayo M. W., Baldwin A. S., Jr TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB. Science. 1996 Nov 1;274(5288):784–787. doi: 10.1126/science.274.5288.784. [DOI] [PubMed] [Google Scholar]
  28. Wilson R. E., Taylor S. L., Atherton G. T., Johnston D., Waters C. M., Norton J. D. Early response gene signalling cascades activated by ionising radiation in primary human B cells. Oncogene. 1993 Dec;8(12):3229–3237. [PubMed] [Google Scholar]
  29. Yamagishi N., Miyakoshi J., Takebe H. Decrease in the frequency of X-ray-induced mutation by wild-type p53 protein in human osteosarcoma cells. Carcinogenesis. 1997 Apr;18(4):695–700. doi: 10.1093/carcin/18.4.695. [DOI] [PubMed] [Google Scholar]
  30. Yamagishi N., Miyakoshi J., Yagi T., Takebe H. Suppression of UV-induced mutations by wild-type p53 protein in human osteosarcoma cells. Mutagenesis. 1997 May;12(3):191–194. doi: 10.1093/mutage/12.3.191. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES