Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Dec 8;82(1):88–92. doi: 10.1054/bjoc.1999.0882

Preservation of tumour oxygen after hyperbaric oxygenation monitored by magnetic resonance imaging

Y Kinoshita 1, K Kohshi 1,2, N Kunugita 3, T Tosaki 4, A Yokota 1
PMCID: PMC2363207  PMID: 10638972

Abstract

Hyperbaric oxygen (HBO) has been proposed to reduce tumour hypoxia by increasing the dissolved molecular oxygen in tissue. Using a non-invasive magnetic resonance imaging (MRI) technique, we monitored the changes in MRI signal intensity after HBO exposure because dissolved paramagnetic molecular oxygen itself shortens the T1 relation time. SCCVII tumour cells transplanted in mice were used. The molecular oxygen-enhanced MR images were acquired using an inversion recovery-preparation fast low angle shot (IR-FLASH) sequence sensitizing the paramagnetic effects of molecular oxygen using a 4.7 tesla MR system. MR signal of muscles decreased rapidly and returned to the control level within 40 min after decompression, whereas that of tumours decreased gradually and remained at a high level 60 min after HBO exposure. In contrast, the signal from the tumours in the normobaric oxygen group showed no significant change. Our data suggested that MR signal changes of tumours and muscles represent an alternation of extravascular oxygenation. The preserving tumour oxygen concentration after HBO exposure may be important regarding adjuvant therapy for cancer patients. © 2000 Cancer Research Campaign

Keywords: hyperbaric oxygenation, molecular oxygen, paramagnetism, relaxation time, magnetic resonance imaging

Full Text

The Full Text of this article is available as a PDF (155.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Al-Hallaq H. A., River J. N., Zamora M., Oikawa H., Karczmar G. S. Correlation of magnetic resonance and oxygen microelectrode measurements of carbogen-induced changes in tumor oxygenation. Int J Radiat Oncol Biol Phys. 1998 Apr 1;41(1):151–159. doi: 10.1016/s0360-3016(98)00038-8. [DOI] [PubMed] [Google Scholar]
  2. Berthezène Y., Tournut P., Turjman F., N'Gbesso R., Falise B., Froment J. C. Inhaled oxygen: a brain MR contrast agent? AJNR Am J Neuroradiol. 1995 Nov-Dec;16(10):2010–2012. [PMC free article] [PubMed] [Google Scholar]
  3. Brizel D. M., Lin S., Johnson J. L., Brooks J., Dewhirst M. W., Piantadosi C. A. The mechanisms by which hyperbaric oxygen and carbogen improve tumour oxygenation. Br J Cancer. 1995 Nov;72(5):1120–1124. doi: 10.1038/bjc.1995.474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Brizel D. M., Scully S. P., Harrelson J. M., Layfield L. J., Dodge R. K., Charles H. C., Samulski T. V., Prosnitz L. R., Dewhirst M. W. Radiation therapy and hyperthermia improve the oxygenation of human soft tissue sarcomas. Cancer Res. 1996 Dec 1;56(23):5347–5350. [PubMed] [Google Scholar]
  5. Collingridge D. R., Young W. K., Vojnovic B., Wardman P., Lynch E. M., Hill S. A., Chaplin D. J. Measurement of tumor oxygenation: a comparison between polarographic needle electrodes and a time-resolved luminescence-based optical sensor. Radiat Res. 1997 Mar;147(3):329–334. [PubMed] [Google Scholar]
  6. Dische S. Hyperbaric oxygen: the Medical Research Council trials and their clinical significance. Br J Radiol. 1978 Nov;51(611):888–894. doi: 10.1259/0007-1285-51-611-888. [DOI] [PubMed] [Google Scholar]
  7. Edelman R. R., Hatabu H., Tadamura E., Li W., Prasad P. V. Noninvasive assessment of regional ventilation in the human lung using oxygen-enhanced magnetic resonance imaging. Nat Med. 1996 Nov;2(11):1236–1239. doi: 10.1038/nm1196-1236. [DOI] [PubMed] [Google Scholar]
  8. Helmlinger G., Yuan F., Dellian M., Jain R. K. Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nat Med. 1997 Feb;3(2):177–182. doi: 10.1038/nm0297-177. [DOI] [PubMed] [Google Scholar]
  9. Karczmar G. S., River J. N., Li J., Vijayakumar S., Goldman Z., Lewis M. Z. Effects of hyperoxia on T2* and resonance frequency weighted magnetic resonance images of rodent tumours. NMR Biomed. 1994 Mar;7(1-2):3–11. doi: 10.1002/nbm.1940070103. [DOI] [PubMed] [Google Scholar]
  10. Kohshi K., Kinoshita Y., Imada H., Kunugita N., Abe H., Terashima H., Tokui N., Uemura S. Effects of radiotherapy after hyperbaric oxygenation on malignant gliomas. Br J Cancer. 1999 Apr;80(1-2):236–241. doi: 10.1038/sj.bjc.6690345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Kohshi K., Kinoshita Y., Terashima H., Konda N., Yokota A., Soejima T. Radiotherapy after hyperbaric oxygenation for malignant gliomas: a pilot study. J Cancer Res Clin Oncol. 1996;122(11):676–678. doi: 10.1007/BF01209031. [DOI] [PubMed] [Google Scholar]
  12. Kuperman VYu, River J. N., Lewis M. Z., Lubich L. M., Karczmar G. S. Changes in T2*-weighted images during hyperoxia differentiate tumors from normal tissue. Magn Reson Med. 1995 Mar;33(3):318–325. doi: 10.1002/mrm.1910330306. [DOI] [PubMed] [Google Scholar]
  13. Obata T., Saito K., Iwasawa T., Hirono K., Yoshida T., Matsubara S. Dynamic MRI of transcorneal dispersion of oxygen into the anterior chamber of human eye. J Magn Reson Imaging. 1998 Mar-Apr;8(2):508–510. doi: 10.1002/jmri.1880080237. [DOI] [PubMed] [Google Scholar]
  14. Ogawa S., Lee T. M., Nayak A. S., Glynn P. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med. 1990 Apr;14(1):68–78. doi: 10.1002/mrm.1910140108. [DOI] [PubMed] [Google Scholar]
  15. Oikawa H., al-Hallaq H. A., Lewis M. Z., River J. N., Kovar D. A., Karczmar G. S. Spectroscopic imaging of the water resonance with short repetition time to study tumor response to hyperoxia. Magn Reson Med. 1997 Jul;38(1):27–32. doi: 10.1002/mrm.1910380106. [DOI] [PubMed] [Google Scholar]
  16. Rampling R., Cruickshank G., Lewis A. D., Fitzsimmons S. A., Workman P. Direct measurement of pO2 distribution and bioreductive enzymes in human malignant brain tumors. Int J Radiat Oncol Biol Phys. 1994 Jun 15;29(3):427–431. doi: 10.1016/0360-3016(94)90432-4. [DOI] [PubMed] [Google Scholar]
  17. Robinson S. P., Howe F. A., Griffiths J. R. Noninvasive monitoring of carbogen-induced changes in tumor blood flow and oxygenation by functional magnetic resonance imaging. Int J Radiat Oncol Biol Phys. 1995 Nov 1;33(4):855–859. doi: 10.1016/0360-3016(95)00072-1. [DOI] [PubMed] [Google Scholar]
  18. Robinson S. P., Rodrigues L. M., Ojugo A. S., McSheehy P. M., Howe F. A., Griffiths J. R. The response to carbogen breathing in experimental tumour models monitored by gradient-recalled echo magnetic resonance imaging. Br J Cancer. 1997;75(7):1000–1006. doi: 10.1038/bjc.1997.172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Shibamoto Y., Kitakabu Y., Murata R., Oya N., Shibata T., Sasai K., Takahashi M., Abe M. Reoxygenation in the SCCVII tumor after KU-2285 sensitization plus single or fractionated irradiation. Int J Radiat Oncol Biol Phys. 1994 Jun 15;29(3):583–586. doi: 10.1016/0360-3016(94)90461-8. [DOI] [PubMed] [Google Scholar]
  20. THOMLINSON R. H., GRAY L. H. The histological structure of some human lung cancers and the possible implications for radiotherapy. Br J Cancer. 1955 Dec;9(4):539–549. doi: 10.1038/bjc.1955.55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Tadamura E., Hatabu H., Li W., Prasad P. V., Edelman R. R. Effect of oxygen inhalation on relaxation times in various tissues. J Magn Reson Imaging. 1997 Jan-Feb;7(1):220–225. doi: 10.1002/jmri.1880070134. [DOI] [PubMed] [Google Scholar]
  22. Vaupel P., Frinak S., O'Hara M. Direct measurement of reoxygenation in malignant mammary tumors after a single large dose of irradiation. Adv Exp Med Biol. 1984;180:773–782. doi: 10.1007/978-1-4684-4895-5_76. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES