Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1999 Dec 8;82(1):39–45. doi: 10.1054/bjoc.1999.0874

Androgen receptor protein is down-regulated by basic fibroblast growth factor in prostate cancer cells

M V Cronauer 1,3, C Nessler-Menardi 1, H Klocker 1, K Maly 2, A Hobisch 1, G Bartsch 1, Z Culig 1
PMCID: PMC2363213  PMID: 10638964

Abstract

Interactions between polypeptide growth factors and the androgen receptor (AR) are important for regulation of cellular events in carcinoma of the prostate. Basic fibroblast growth factor (bFGF), the prototype of heparin-binding growth factors, and the AR are commonly expressed in prostate cancer. bFGF diminished prostate-specific antigen protein in the supernatants of androgen-stimulated human prostate cancer cells LNCaP by 80%. In the present study, we asked whether the bFGF effect on prostate-specific antigen is preceded by action on AR expression. LNCaP cells were treated with bFGF and AR protein expression was determined by immunoblotting and ligand binding assay. bFGF down-regulated AR protein in a dose-dependent manner showing a maximal effect at 50 ng ml−1both in the presence or absence of dihydrotestosterone. Down-regulation of AR protein expression occurred already after 8 h of bFGF treatment and a maximal inhibition was observed 24 h after addition of bFGF to culture media. As AR expression can be reduced by an increase in intracellular calcium levels, we investigated whether the bFGF effect on AR protein is mediated by this mechanism. Calcium release from intracellular stores and store-operated calcium influx after treatment with either bFGF or calcium ionophore A 23187 were measured by single cell fluorescence technique. The ionophore A 23187 was able to induce calcium influx and an increase in cytoplasmic calcium concentration in LNCaP cells. In contrast, bFGF was incapable of eliciting a similar effect. In contrast to AR protein, AR mRNA levels were not affected by bFGF as shown by semiquantitative reverse transcription polymerase chain reaction. In summary, these studies show that bFGF is a potent negative regulator of AR protein expression in the human prostate cancer cell line LNCaP. © 2000 Cancer Research Campaign

Keywords: basic fibroblast growth factor, androgen receptor, prostate cancer, calcium influx

Full Text

The Full Text of this article is available as a PDF (140.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bikfalvi A. Significance of angiogenesis in tumour progression and metastasis. Eur J Cancer. 1995 Jul-Aug;31A(7-8):1101–1104. doi: 10.1016/0959-8049(95)00169-j. [DOI] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  3. Chaproniere D. M., McKeehan W. L. Serial culture of single adult human prostatic epithelial cells in serum-free medium containing low calcium and a new growth factor from bovine brain. Cancer Res. 1986 Feb;46(2):819–824. [PubMed] [Google Scholar]
  4. Cheng B., McMahon D. G., Mattson M. P. Modulation of calcium current, intracellular calcium levels and cell survival by glucose deprivation and growth factors in hippocampal neurons. Brain Res. 1993 Apr 2;607(1-2):275–285. doi: 10.1016/0006-8993(93)91517-v. [DOI] [PubMed] [Google Scholar]
  5. Cronauer M. V., Eder I. E., Hittmair A., Sierek G., Hobisch A., Culig Z., Thurnher M., Bartsch G., Klocker H. A reliable system for the culture of human prostatic cells. In Vitro Cell Dev Biol Anim. 1997 Nov-Dec;33(10):742–744. doi: 10.1007/s11626-997-0150-y. [DOI] [PubMed] [Google Scholar]
  6. Cronauer M. V., Hittmair A., Eder I. E., Hobisch A., Culig Z., Ramoner R., Zhang J., Bartsch G., Reissigl A., Radmayr C. Basic fibroblast growth factor levels in cancer cells and in sera of patients suffering from proliferative disorders of the prostate. Prostate. 1997 Jun 1;31(4):223–233. doi: 10.1002/(sici)1097-0045(19970601)31:4<223::aid-pros3>3.0.co;2-l. [DOI] [PubMed] [Google Scholar]
  7. Culig Z., Hobisch A., Herold M., Hittmair A., Thurnher M., Eder I. E., Cronauer M. V., Rieser C., Ramoner R., Bartsch G. Interleukin 1beta mediates the modulatory effects of monocytes on LNCaP human prostate cancer cells. Br J Cancer. 1998 Oct;78(8):1004–1011. doi: 10.1038/bjc.1998.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Eder I. E., Stenzl A., Hobisch A., Cronauer M. V., Bartsch G., Klocker H. Expression of transforming growth factors beta-1, beta 2 and beta 3 in human bladder carcinomas. Br J Cancer. 1997;75(12):1753–1760. doi: 10.1038/bjc.1997.299. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Froesch B. A., Takayama S., Reed J. C. BAG-1L protein enhances androgen receptor function. J Biol Chem. 1998 May 8;273(19):11660–11666. doi: 10.1074/jbc.273.19.11660. [DOI] [PubMed] [Google Scholar]
  10. Gleave M. E., Hsieh J. T., Wu H. C., von Eschenbach A. C., Chung L. W. Serum prostate specific antigen levels in mice bearing human prostate LNCaP tumors are determined by tumor volume and endocrine and growth factors. Cancer Res. 1992 Mar 15;52(6):1598–1605. [PubMed] [Google Scholar]
  11. Gong Y., Blok L. J., Perry J. E., Lindzey J. K., Tindall D. J. Calcium regulation of androgen receptor expression in the human prostate cancer cell line LNCaP. Endocrinology. 1995 May;136(5):2172–2178. doi: 10.1210/endo.136.5.7720667. [DOI] [PubMed] [Google Scholar]
  12. Grant E. S., Batchelor K. W., Habib F. K. Androgen independence of primary epithelial cultures of the prostate is associated with a down-regulation of androgen receptor gene expression. Prostate. 1996 Dec;29(6):339–349. doi: 10.1002/(SICI)1097-0045(199612)29:6<339::AID-PROS1>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
  13. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  14. Henttu P., Vihko P. Growth factor regulation of gene expression in the human prostatic carcinoma cell line LNCaP. Cancer Res. 1993 Mar 1;53(5):1051–1058. [PubMed] [Google Scholar]
  15. Hobisch A., Culig Z., Radmayr C., Bartsch G., Klocker H., Hittmair A. Androgen receptor status of lymph node metastases from prostate cancer. Prostate. 1996 Feb;28(2):129–135. doi: 10.1002/(SICI)1097-0045(199602)28:2<129::AID-PROS9>3.0.CO;2-B. [DOI] [PubMed] [Google Scholar]
  16. Hobisch A., Culig Z., Radmayr C., Bartsch G., Klocker H., Hittmair A. Distant metastases from prostatic carcinoma express androgen receptor protein. Cancer Res. 1995 Jul 15;55(14):3068–3072. [PubMed] [Google Scholar]
  17. Hrzenjak M., Shain S. A. Fibroblast growth factor-2 and TPA enhance prostate-cancer-cell proliferation and activate members of the Ras and PKC signal transduction pathways. Recept Signal Transduct. 1997;7(4):207–219. [PubMed] [Google Scholar]
  18. Hurley M. M., Marcello K., Abreu C., Kessler M. Signal transduction by basic fibroblast growth factor in rat osteoblastic Py1a cells. J Bone Miner Res. 1996 Sep;11(9):1256–1263. doi: 10.1002/jbmr.5650110910. [DOI] [PubMed] [Google Scholar]
  19. Ikonen T., Palvimo J. J., Kallio P. J., Reinikainen P., Jänne O. A. Stimulation of androgen-regulated transactivation by modulators of protein phosphorylation. Endocrinology. 1994 Oct;135(4):1359–1366. doi: 10.1210/endo.135.4.7925097. [DOI] [PubMed] [Google Scholar]
  20. Kallio P. J., Jänne O. A., Palvimo J. J. Agonists, but not antagonists, alter the conformation of the hormone-binding domain of androgen receptor. Endocrinology. 1994 Feb;134(2):998–1001. doi: 10.1210/endo.134.2.8299593. [DOI] [PubMed] [Google Scholar]
  21. Krongrad A., Wilson C. M., Wilson J. D., Allman D. R., McPhaul M. J. Androgen increases androgen receptor protein while decreasing receptor mRNA in LNCaP cells. Mol Cell Endocrinol. 1991 Apr;76(1-3):79–88. doi: 10.1016/0303-7207(91)90262-q. [DOI] [PubMed] [Google Scholar]
  22. Merle P. L., Usson Y., Robert-Nicoud M., Verdetti J. Basic FGF enhances calcium permeable channel openings in adult rat cardiac myocytes: implication in the bFGF-induced increase of free Ca2+ content. J Mol Cell Cardiol. 1997 Oct;29(10):2687–2698. doi: 10.1006/jmcc.1997.0500. [DOI] [PubMed] [Google Scholar]
  23. Meyer G. E., Yu E., Siegal J. A., Petteway J. C., Blumenstein B. A., Brawer M. K. Serum basic fibroblast growth factor in men with and without prostate carcinoma. Cancer. 1995 Dec 1;76(11):2304–2311. doi: 10.1002/1097-0142(19951201)76:11<2304::aid-cncr2820761119>3.0.co;2-n. [DOI] [PubMed] [Google Scholar]
  24. Milasincic D. J., Calera M. R., Farmer S. R., Pilch P. F. Stimulation of C2C12 myoblast growth by basic fibroblast growth factor and insulin-like growth factor 1 can occur via mitogen-activated protein kinase-dependent and -independent pathways. Mol Cell Biol. 1996 Nov;16(11):5964–5973. doi: 10.1128/mcb.16.11.5964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mizokami A., Saiga H., Matsui T., Mita T., Sugita A. Regulation of androgen receptor by androgen and epidermal growth factor in a human prostatic cancer cell line, LNCaP. Endocrinol Jpn. 1992 Jun;39(3):235–243. doi: 10.1507/endocrj1954.39.235. [DOI] [PubMed] [Google Scholar]
  26. Mizokami A., Yeh S. Y., Chang C. Identification of 3',5'-cyclic adenosine monophosphate response element and other cis-acting elements in the human androgen receptor gene promoter. Mol Endocrinol. 1994 Jan;8(1):77–88. doi: 10.1210/mend.8.1.8152432. [DOI] [PubMed] [Google Scholar]
  27. Nakamoto T., Chang C. S., Li A. K., Chodak G. W. Basic fibroblast growth factor in human prostate cancer cells. Cancer Res. 1992 Feb 1;52(3):571–577. [PubMed] [Google Scholar]
  28. Peehl D. M., Stamey T. A. Serum-free growth of adult human prostatic epithelial cells. In Vitro Cell Dev Biol. 1986 Feb;22(2):82–90. doi: 10.1007/BF02623537. [DOI] [PubMed] [Google Scholar]
  29. Peterziel H., Culig Z., Stober J., Hobisch A., Radmayr C., Bartsch G., Klocker H., Cato A. C. Mutant androgen receptors in prostatic tumors distinguish between amino-acid-sequence requirements for transactivation and ligand binding. Int J Cancer. 1995 Nov 15;63(4):544–550. doi: 10.1002/ijc.2910630415. [DOI] [PubMed] [Google Scholar]
  30. Raffioni S., Bradshaw R. A. Activation of phosphatidylinositol 3-kinase by epidermal growth factor, basic fibroblast growth factor, and nerve growth factor in PC12 pheochromocytoma cells. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9121–9125. doi: 10.1073/pnas.89.19.9121. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Russell P. J., Bennett S., Joshua A., Yu Y., Downing S. R., Hill M. A., Kingsley E. A., Mason R. S., Berry J. Elevated expression of FGF-2 does not cause prostate cancer progression in LNCaP cells. Prostate. 1999 Jun 15;40(1):1–13. doi: 10.1002/(sici)1097-0045(19990615)40:1<1::aid-pros1>3.0.co;2-k. [DOI] [PubMed] [Google Scholar]
  32. Sa G., Fox P. L. Basic fibroblast growth factor-stimulated endothelial cell movement is mediated by a pertussis toxin-sensitive pathway regulating phospholipase A2 activity. J Biol Chem. 1994 Feb 4;269(5):3219–3225. [PubMed] [Google Scholar]
  33. Shain S. A., Sarić T., Ke L. D., Nannen D., Yoas S. Endogenous fibroblast growth factor-1 or fibroblast growth factor-2 modulate prostate cancer cell proliferation. Cell Growth Differ. 1996 May;7(5):573–586. [PubMed] [Google Scholar]
  34. Sherwood E. R., Fong C. J., Lee C., Kozlowski J. M. Basic fibroblast growth factor: a potential mediator of stromal growth in the human prostate. Endocrinology. 1992 May;130(5):2955–2963. doi: 10.1210/endo.130.5.1374018. [DOI] [PubMed] [Google Scholar]
  35. Story M. T., Livingston B., Baeten L., Swartz S. J., Jacobs S. C., Begun F. P., Lawson R. K. Cultured human prostate-derived fibroblasts produce a factor that stimulates their growth with properties indistinguishable from basic fibroblast growth factor. Prostate. 1989;15(4):355–365. doi: 10.1002/pros.2990150408. [DOI] [PubMed] [Google Scholar]
  36. Suzuki A., Shinoda J., Kanda S., Oiso Y., Kozawa O. Basic fibroblast growth factor stimulates phosphatidylcholine-hydrolyzing phospholipase D in osteoblast-like cells. J Cell Biochem. 1996 Dec 15;63(4):491–499. doi: 10.1002/(sici)1097-4644(19961215)63:4<491::aid-jcb10>3.0.co;2-h. [DOI] [PubMed] [Google Scholar]
  37. Tilley W. D., Wilson C. M., Marcelli M., McPhaul M. J. Androgen receptor gene expression in human prostate carcinoma cell lines. Cancer Res. 1990 Sep 1;50(17):5382–5386. [PubMed] [Google Scholar]
  38. Tinhofer I., Maly K., Dietl P., Hochholdinger F., Mayr S., Obermeier A., Grunicke H. H. Differential Ca2+ signaling induced by activation of the epidermal growth factor and nerve growth factor receptors. J Biol Chem. 1996 Nov 29;271(48):30505–30509. doi: 10.1074/jbc.271.48.30505. [DOI] [PubMed] [Google Scholar]
  39. Veldscholte J., Ris-Stalpers C., Kuiper G. G., Jenster G., Berrevoets C., Claassen E., van Rooij H. C., Trapman J., Brinkmann A. O., Mulder E. A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. Biochem Biophys Res Commun. 1990 Dec 14;173(2):534–540. doi: 10.1016/s0006-291x(05)80067-1. [DOI] [PubMed] [Google Scholar]
  40. Wasilenko W. J., Cooper J., Palad A. J., Somers K. D., Blackmore P. F., Rhim J. S., Wright G. L., Jr, Schellhammer P. F. Calcium signaling in prostate cancer cells: evidence for multiple receptors and enhanced sensitivity to bombesin/GRP. Prostate. 1997 Feb 15;30(3):167–173. doi: 10.1002/(sici)1097-0045(19970215)30:3<167::aid-pros4>3.0.co;2-j. [DOI] [PubMed] [Google Scholar]
  41. Wiren K. M., Zhang X., Chang C., Keenan E., Orwoll E. S. Transcriptional up-regulation of the human androgen receptor by androgen in bone cells. Endocrinology. 1997 Jun;138(6):2291–2300. doi: 10.1210/endo.138.6.5163. [DOI] [PubMed] [Google Scholar]
  42. Yeh S., Chang C. Cloning and characterization of a specific coactivator, ARA70, for the androgen receptor in human prostate cells. Proc Natl Acad Sci U S A. 1996 May 28;93(11):5517–5521. doi: 10.1073/pnas.93.11.5517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Young C. Y., Murtha P. E., Andrews P. E., Lindzey J. K., Tindall D. J. Antagonism of androgen action in prostate tumor cells by retinoic acid. Prostate. 1994 Jul;25(1):39–45. doi: 10.1002/pros.2990250106. [DOI] [PubMed] [Google Scholar]
  44. Zhou Z. X., Lane M. V., Kemppainen J. A., French F. S., Wilson E. M. Specificity of ligand-dependent androgen receptor stabilization: receptor domain interactions influence ligand dissociation and receptor stability. Mol Endocrinol. 1995 Feb;9(2):208–218. doi: 10.1210/mend.9.2.7776971. [DOI] [PubMed] [Google Scholar]
  45. van der Kwast T. H., Schalken J., Ruizeveld de Winter J. A., van Vroonhoven C. C., Mulder E., Boersma W., Trapman J. Androgen receptors in endocrine-therapy-resistant human prostate cancer. Int J Cancer. 1991 May 10;48(2):189–193. doi: 10.1002/ijc.2910480206. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES