Abstract
A human tamoxifen-resistant mammary carcinoma, MaCa 3366/TAM, originating from a sensitive parental xenograft 3366 was successfully established by treatment of tumour-bearing nude mice with 1–50 mg kg−1tamoxifen for 3 years during routine passaging. Both tumours did not differ significantly in OR- and PR-positivity, however, when compared with the sensitive tumour line, the mean OR content of the TAM-resistant subline is slightly lower. An OR-upregulation following withdrawal of oestradiol treatment was observed in the parental tumours but not in the resistant xenografts. Following long-term treatment with tamoxifen, the histological pattern of the breast carcinoma changed. The more differentiated structures being apparent after treatment with 17β-oestradiol in the original 3366 tumour were not induced in the resistant line. Tamoxifen failed to induce a tumour growth inhibition in comparison to the tamoxifen-sensitive line. The pure anti-oestrogen, ICI 182 780, revealed cross-resistance. Sequence analysis of the hormone-binding domain of the OR of both lines showed no differences, suggesting that either mutations in other regions of the OR are involved in the TAM-resistance phenotype or that mechanisms outside of this protein induced this phenotype. Oestrogen and anti-oestrogen regulate pS2 and cathepsin D expression in 3366 tumours as in the human breast cancer cell line MCF-7. The resistant 3366/TAM tumours have lost this regulation. The established breast cancer xenografts 3366 and 3366/TAM offer the possibility of investigating mechanisms of anti-oestrogen resistance in an in vivo situation. They can be used to test novel approaches to prevent, or to overcome, this resistance in a clinically related manner. © 2000 Cancer Research Campaign
Keywords: tamoxifen resistance, breast cancer, xenograft, oestrogen receptor, cathepsin D gene, pS2 gene
Full Text
The Full Text of this article is available as a PDF (210.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Augereau P., Garcia M., Mattei M. G., Cavailles V., Depadova F., Derocq D., Capony F., Ferrara P., Rochefort H. Cloning and sequencing of the 52K cathepsin D complementary deoxyribonucleic acid of MCF7 breast cancer cells and mapping on chromosome 11. Mol Endocrinol. 1988 Feb;2(2):186–192. doi: 10.1210/mend-2-2-186. [DOI] [PubMed] [Google Scholar]
- Barkhem T., Carlsson B., Nilsson Y., Enmark E., Gustafsson J., Nilsson S. Differential response of estrogen receptor alpha and estrogen receptor beta to partial estrogen agonists/antagonists. Mol Pharmacol. 1998 Jul;54(1):105–112. doi: 10.1124/mol.54.1.105. [DOI] [PubMed] [Google Scholar]
- Brzozowski A. M., Pike A. C., Dauter Z., Hubbard R. E., Bonn T., Engström O., Ohman L., Greene G. L., Gustafsson J. A., Carlquist M. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature. 1997 Oct 16;389(6652):753–758. doi: 10.1038/39645. [DOI] [PubMed] [Google Scholar]
- Clarke R. Human breast cancer cell line xenografts as models of breast cancer. The immunobiologies of recipient mice and the characteristics of several tumorigenic cell lines. Breast Cancer Res Treat. 1996;39(1):69–86. doi: 10.1007/BF01806079. [DOI] [PubMed] [Google Scholar]
- Denton R. R., Koszewski N. J., Notides A. C. Estrogen receptor phosphorylation. Hormonal dependence and consequence on specific DNA binding. J Biol Chem. 1992 Apr 15;267(11):7263–7268. [PubMed] [Google Scholar]
- Foekens J. A., Portengen H., Look M. P., van Putten W. L., Thirion B., Bontenbal M., Klijn J. G. Relationship of PS2 with response to tamoxifen therapy in patients with recurrent breast cancer. Br J Cancer. 1994 Dec;70(6):1217–1223. doi: 10.1038/bjc.1994.476. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gottardis M. M., Jordan V. C. Development of tamoxifen-stimulated growth of MCF-7 tumors in athymic mice after long-term antiestrogen administration. Cancer Res. 1988 Sep 15;48(18):5183–5187. [PubMed] [Google Scholar]
- Green S., Walter P., Kumar V., Krust A., Bornert J. M., Argos P., Chambon P. Human oestrogen receptor cDNA: sequence, expression and homology to v-erb-A. Nature. 1986 Mar 13;320(6058):134–139. doi: 10.1038/320134a0. [DOI] [PubMed] [Google Scholar]
- Jensen B. L., Skouv J., Lundholt B. K., Lykkesfeldt A. E. Differential regulation of specific genes in MCF-7 and the ICI 182780-resistant cell line MCF-7/182R-6. Br J Cancer. 1999 Feb;79(3-4):386–392. doi: 10.1038/sj.bjc.6690061. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Johnston S. R., Saccani-Jotti G., Smith I. E., Salter J., Newby J., Coppen M., Ebbs S. R., Dowsett M. Changes in estrogen receptor, progesterone receptor, and pS2 expression in tamoxifen-resistant human breast cancer. Cancer Res. 1995 Aug 1;55(15):3331–3338. [PubMed] [Google Scholar]
- Karnik P. S., Kulkarni S., Liu X. P., Budd G. T., Bukowski R. M. Estrogen receptor mutations in tamoxifen-resistant breast cancer. Cancer Res. 1994 Jan 15;54(2):349–353. [PubMed] [Google Scholar]
- Katzenellenbogen B. S., Montano M. M., Ekena K., Herman M. E., McInerney E. M. William L. McGuire Memorial Lecture. Antiestrogens: mechanisms of action and resistance in breast cancer. Breast Cancer Res Treat. 1997 May;44(1):23–38. doi: 10.1023/a:1005835428423. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Laborda J. 36B4 cDNA used as an estradiol-independent mRNA control is the cDNA for human acidic ribosomal phosphoprotein PO. Nucleic Acids Res. 1991 Jul 25;19(14):3998–3998. doi: 10.1093/nar/19.14.3998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Landel C. C., Kushner P. J., Greene G. L. The interaction of human estrogen receptor with DNA is modulated by receptor-associated proteins. Mol Endocrinol. 1994 Oct;8(10):1407–1419. doi: 10.1210/mend.8.10.7854357. [DOI] [PubMed] [Google Scholar]
- Larsen S. S., Madsen M. W., Jensen B. L., Lykkesfeldt A. E. Resistance of human breast-cancer cells to the pure steroidal anti-estrogen ICI 182,780 is not associated with a general loss of estrogen-receptor expression or lack of estrogen responsiveness. Int J Cancer. 1997 Sep 17;72(6):1129–1136. doi: 10.1002/(sici)1097-0215(19970917)72:6<1129::aid-ijc31>3.0.co;2-x. [DOI] [PubMed] [Google Scholar]
- Lavinsky R. M., Jepsen K., Heinzel T., Torchia J., Mullen T. M., Schiff R., Del-Rio A. L., Ricote M., Ngo S., Gemsch J. Diverse signaling pathways modulate nuclear receptor recruitment of N-CoR and SMRT complexes. Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):2920–2925. doi: 10.1073/pnas.95.6.2920. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lykkesfeldt A. E., Madsen M. W., Briand P. Altered expression of estrogen-regulated genes in a tamoxifen-resistant and ICI 164,384 and ICI 182,780 sensitive human breast cancer cell line, MCF-7/TAMR-1. Cancer Res. 1994 Mar 15;54(6):1587–1595. [PubMed] [Google Scholar]
- Lykkesfeldt A. E. Mechanisms of tamoxifen resistance in the treatment of advanced breast cancer. Acta Oncol. 1996;35 (Suppl 5):9–14. doi: 10.3109/02841869609083961. [DOI] [PubMed] [Google Scholar]
- Maalouf G. J., Xu W., Smith T. F., Mohr S. C. Homology model for the ligand-binding domain of the human estrogen receptor. J Biomol Struct Dyn. 1998 Apr;15(5):841–851. doi: 10.1080/07391102.1998.10508206. [DOI] [PubMed] [Google Scholar]
- Madsen M. W., Lykkesfeldt A. E., Laursen I., Nielsen K. V., Briand P. Altered gene expression of c-myc, epidermal growth factor receptor, transforming growth factor-alpha, and c-erb-B2 in an immortalized human breast epithelial cell line, HMT-3522, is associated with decreased growth factor requirements. Cancer Res. 1992 Mar 1;52(5):1210–1217. [PubMed] [Google Scholar]
- Madsen M. W., Reiter B. E., Larsen S. S., Briand P., Lykkesfeldt A. E. Estrogen receptor messenger RNA splice variants are not involved in antiestrogen resistance in sublines of MCF-7 human breast cancer cells. Cancer Res. 1997 Feb 15;57(4):585–589. [PubMed] [Google Scholar]
- Mahfoudi A., Roulet E., Dauvois S., Parker M. G., Wahli W. Specific mutations in the estrogen receptor change the properties of antiestrogens to full agonists. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4206–4210. doi: 10.1073/pnas.92.10.4206. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Martin M. B., Saceda M., Garcia-Morales P., Gottardis M. M. Regulation of estrogen receptor expression. Breast Cancer Res Treat. 1994;31(2-3):183–189. doi: 10.1007/BF00666152. [DOI] [PubMed] [Google Scholar]
- Masiakowski P., Breathnach R., Bloch J., Gannon F., Krust A., Chambon P. Cloning of cDNA sequences of hormone-regulated genes from the MCF-7 human breast cancer cell line. Nucleic Acids Res. 1982 Dec 20;10(24):7895–7903. doi: 10.1093/nar/10.24.7895. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Montano M. M., Müller V., Trobaugh A., Katzenellenbogen B. S. The carboxy-terminal F domain of the human estrogen receptor: role in the transcriptional activity of the receptor and the effectiveness of antiestrogens as estrogen antagonists. Mol Endocrinol. 1995 Jul;9(7):814–825. doi: 10.1210/mend.9.7.7476965. [DOI] [PubMed] [Google Scholar]
- Murphy C. S., Langan-Fahey S. M., McCague R., Jordan V. C. Structure-function relationships of hydroxylated metabolites of tamoxifen that control the proliferation of estrogen-responsive T47D breast cancer cells in vitro. Mol Pharmacol. 1990 Nov;38(5):737–743. [PubMed] [Google Scholar]
- Murphy L. C., Wang M., Coutt A., Dotzlaw H. Novel mutations in the estrogen receptor messenger RNA in human breast cancers. J Clin Endocrinol Metab. 1996 Apr;81(4):1420–1427. doi: 10.1210/jcem.81.4.8636345. [DOI] [PubMed] [Google Scholar]
- Naundorf H., Arnold W. Breeding of nude mice under improved conventional conditions. Z Versuchstierkd. 1981;23(2):77–79. [PubMed] [Google Scholar]
- Naundorf H., Fichtner I., Büttner B., Frege J. Establishment and characterization of a new human oestradiol- and progesterone-receptor-positive mammary carcinoma serially transplantable in nude mice. J Cancer Res Clin Oncol. 1992;119(1):35–40. doi: 10.1007/BF01209485. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noguchi S., Motomura K., Inaji H., Imaoka S., Koyama H. Up-regulation of estrogen receptor by tamoxifen in human breast cancer. Cancer. 1993 Feb 15;71(4):1266–1272. doi: 10.1002/1097-0142(19930215)71:4<1266::aid-cncr2820710416>3.0.co;2-k. [DOI] [PubMed] [Google Scholar]
- Osborne C. K., Coronado E. B., Robinson J. P. Human breast cancer in the athymic nude mouse: cytostatic effects of long-term antiestrogen therapy. Eur J Cancer Clin Oncol. 1987 Aug;23(8):1189–1196. doi: 10.1016/0277-5379(87)90154-4. [DOI] [PubMed] [Google Scholar]
- Osborne C. K., Fuqua S. A. Mechanisms of tamoxifen resistance. Breast Cancer Res Treat. 1994;32(1):49–55. doi: 10.1007/BF00666205. [DOI] [PubMed] [Google Scholar]
- Paech K., Webb P., Kuiper G. G., Nilsson S., Gustafsson J., Kushner P. J., Scanlan T. S. Differential ligand activation of estrogen receptors ERalpha and ERbeta at AP1 sites. Science. 1997 Sep 5;277(5331):1508–1510. doi: 10.1126/science.277.5331.1508. [DOI] [PubMed] [Google Scholar]
- Pink J. J., Jordan V. C. Models of estrogen receptor regulation by estrogens and antiestrogens in breast cancer cell lines. Cancer Res. 1996 May 15;56(10):2321–2330. [PubMed] [Google Scholar]
- Rio M. C., Bellocq J. P., Gairard B., Rasmussen U. B., Krust A., Koehl C., Calderoli H., Schiff V., Renaud R., Chambon P. Specific expression of the pS2 gene in subclasses of breast cancers in comparison with expression of the estrogen and progesterone receptors and the oncogene ERBB2. Proc Natl Acad Sci U S A. 1987 Dec;84(24):9243–9247. doi: 10.1073/pnas.84.24.9243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thompson E. W., Brünner N., Torri J., Johnson M. D., Boulay V., Wright A., Lippman M. E., Steeg P. S., Clarke R. The invasive and metastatic properties of hormone-independent but hormone-responsive variants of MCF-7 human breast cancer cells. Clin Exp Metastasis. 1993 Jan;11(1):15–26. doi: 10.1007/BF00880062. [DOI] [PubMed] [Google Scholar]
- Tonetti D. A., Jordan V. C. Possible mechanisms in the emergence of tamoxifen-resistant breast cancer. Anticancer Drugs. 1995 Aug;6(4):498–507. doi: 10.1097/00001813-199508000-00002. [DOI] [PubMed] [Google Scholar]
- Tonetti D. A., Jordan V. C. The role of estrogen receptor mutations in tamoxifen-stimulated breast cancer. J Steroid Biochem Mol Biol. 1997 Jun;62(2-3):119–128. doi: 10.1016/s0960-0760(97)00034-4. [DOI] [PubMed] [Google Scholar]
- Westley B., May F. E., Brown A. M., Krust A., Chambon P., Lippman M. E., Rochefort H. Effects of antiestrogens on the estrogen-regulated pS2 RNA and the 52- and 160-kilodalton proteins in MCF7 cells and two tamoxifen-resistant sublines. J Biol Chem. 1984 Aug 25;259(16):10030–10035. [PubMed] [Google Scholar]
- Westley B., Rochefort H. A secreted glycoprotein induced by estrogen in human breast cancer cell lines. Cell. 1980 Jun;20(2):353–362. doi: 10.1016/0092-8674(80)90621-2. [DOI] [PubMed] [Google Scholar]
- Wolf D. M., Jordan V. C. Characterization of tamoxifen stimulated MCF-7 tumor variants grown in athymic mice. Breast Cancer Res Treat. 1994;31(1):117–127. doi: 10.1007/BF00689682. [DOI] [PubMed] [Google Scholar]
- van Agthoven T., van Agthoven T. L., Dekker A., van der Spek P. J., Vreede L., Dorssers L. C. Identification of BCAR3 by a random search for genes involved in antiestrogen resistance of human breast cancer cells. EMBO J. 1998 May 15;17(10):2799–2808. doi: 10.1093/emboj/17.10.2799. [DOI] [PMC free article] [PubMed] [Google Scholar]