Abstract
Clinical studies of the treatment of glioma and cutaneous melanoma using boron neutron capture therapy (BNCT) are currently taking place in the USA, Europe and Japan. New BNCT clinical facilities are under construction in Finland, Sweden, England and California. The observation of transient acute effects in the oral mucosa of a number of glioma patients involved in the American clinical trials, suggests that radiation damage of the oral mucosa could be a potential complication in future BNCT clinical protocols, involving higher doses and larger irradiation field sizes. The present investigation is the first to use a high resolution surface analytical technique to relate the microdistribution of boron-10 (10B) in the oral mucosa to the biological effectiveness of the 10B(n,α)7Li neutron capture reaction in this tissue. The two boron delivery agents used clinically in Europe/Japan and the USA, borocaptate sodium (BSH) and p-boronophenylalanine (BPA), respectively, were evaluated using a rat ventral tongue model. 10B concentrations in various regions of the tongue mucosa were estimated using ion microscopy. In the epithelium, levels of 10B were appreciably lower after the administration of BSH than was the case after BPA. The epithelium:blood 10B partition ratios were 0.2:1 and 1:1 for BSH and BPA respectively. The 10B content of the lamina propria was higher than that measured in the epithelium for both BSH and BPA. The difference was most marked for BSH, where 10B levels were a factor of six higher in the lamina propria than in the epithelium. The concentration of 10B was also measured in blood vessel walls where relatively low levels of accumulation of BSH, as compared with BPA, was demonstrated in blood vessel endothelial cells and muscle. Vessel wall:blood 10B partition ratios were 0.3:1 and 0.9:1 for BSH and BPA respectively. Evaluation of tongue mucosal response (ulceration) to BNC irradiation indicated a considerably reduced radiation sensitivity using BSH as the boron delivery agent relative to BPA. The compound biological effectiveness (CBE) factor for BSH was estimated at 0.29 ± 0.02. This compares with a previously published CBE factor for BPA of 4.87 ± 0.16. It was concluded that variations in the microdistribution profile of 10B, using the two boron delivery agents, had a significant effect on the response of oral mucosa to BNC irradiation. From a clinical perspective, based on the findings of the present study, it is probable that potential radiation-induced oral mucositis will be restricted to BNCT protocols involving BPA. However, a thorough high resolution analysis of 10B microdistribution in human oral mucosal tissue, using a technique such as ion microscopy, is a prerequisite for the use of experimentally derived CBE factors in clinical BNCT. © 2000 Cancer Research Campaign
Keywords: borocaptate sodium, p-boronophenylalanine, rat ventral tongue mucosa, compound biological effectiveness factor, ion microscopy imaging
Full Text
The Full Text of this article is available as a PDF (205.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ang K. K., Landuyt W., Rijnders A., van der Schueren E. Differences in repopulation kinetics in mouse skin during split course multiple fractions per day (MFD) or daily fractionated irradiations. Int J Radiat Oncol Biol Phys. 1984 Jan;10(1):95–99. doi: 10.1016/0360-3016(84)90417-6. [DOI] [PubMed] [Google Scholar]
- Archambeau J. O. Swine skin: a model to evaluate dose recovery from different radiations. Basic Life Sci. 1989;50:9–20. doi: 10.1007/978-1-4684-5622-6_2. [DOI] [PubMed] [Google Scholar]
- Ausserer W. A., Ling Y. C., Chandra S., Morrison G. H. Quantitative imaging of boron, calcium, magnesium, potassium, and sodium distributions in cultured cells with ion microscopy. Anal Chem. 1989 Dec 15;61(24):2690–2695. doi: 10.1021/ac00199a002. [DOI] [PubMed] [Google Scholar]
- Barth R. F., Adams D. M., Soloway A. H., Mechetner E. B., Alam F., Anisuzzaman A. K. Determination of boron in tissues and cells using direct-current plasma atomic emission spectroscopy. Anal Chem. 1991 May 1;63(9):890–893. doi: 10.1021/ac00009a010. [DOI] [PubMed] [Google Scholar]
- Barth R. F., Soloway A. H., Goodman J. H., Gahbauer R. A., Gupta N., Blue T. E., Yang W., Tjarks W. Boron neutron capture therapy of brain tumors: an emerging therapeutic modality. Neurosurgery. 1999 Mar;44(3):433–451. doi: 10.1097/00006123-199903000-00001. [DOI] [PubMed] [Google Scholar]
- Coderre J. A., Button T. M., Micca P. L., Fisher C. D., Nawrocky M. M., Liu H. B. Neutron capture therapy of the 9L rat gliosarcoma using the p-boronophenylalanine-fructose complex. Int J Radiat Oncol Biol Phys. 1994 Oct 15;30(3):643–652. doi: 10.1016/0360-3016(92)90951-d. [DOI] [PubMed] [Google Scholar]
- Coderre J. A., Elowitz E. H., Chadha M., Bergland R., Capala J., Joel D. D., Liu H. B., Slatkin D. N., Chanana A. D. Boron neutron capture therapy for glioblastoma multiforme using p-boronophenylalanine and epithermal neutrons: trial design and early clinical results. J Neurooncol. 1997 May;33(1-2):141–152. doi: 10.1023/a:1005741919442. [DOI] [PubMed] [Google Scholar]
- Coderre J. A., Morris G. M., Kalef-Ezra J., Micca P. L., Ma R., Youngs K., Gordon C. R. The effects of boron neutron capture irradiation on oral mucosa: evaluation using a rat tongue model. Radiat Res. 1999 Aug;152(2):113–118. [PubMed] [Google Scholar]
- Coderre J. A., Morris G. M. The radiation biology of boron neutron capture therapy. Radiat Res. 1999 Jan;151(1):1–18. [PubMed] [Google Scholar]
- Dutreix J., Tubiana M., Wambersie A., Malaise E. The influence of cell proliferation in tumours and normal tissues during fractionated radiotherapy. Eur J Cancer. 1971 May;7(2):205–213. doi: 10.1016/0014-2964(71)90018-1. [DOI] [PubMed] [Google Scholar]
- Dörr W., Kummermehr J. Accelerated repopulation of mouse tongue epithelium during fractionated irradiations or following single doses. Radiother Oncol. 1990 Mar;17(3):249–259. doi: 10.1016/0167-8140(90)90209-f. [DOI] [PubMed] [Google Scholar]
- Fairchild R. G., Gabel D., Laster B. H., Greenberg D., Kiszenick W., Micca P. L. Microanalytical techniques for boron analysis using the 10B(n,alpha)7Li reaction. Med Phys. 1986 Jan-Feb;13(1):50–56. doi: 10.1118/1.595962. [DOI] [PubMed] [Google Scholar]
- Fukuda H., Hiratsuka J., Honda C., Kobayashi T., Yoshino K., Karashima H., Takahashi J., Abe Y., Kanda K., Ichihashi M. Boron neutron capture therapy of malignant melanoma using 10B-paraboronophenylalanine with special reference to evaluation of radiation dose and damage to the normal skin. Radiat Res. 1994 Jun;138(3):435–442. [PubMed] [Google Scholar]
- Gabel D., Foster S., Fairchild R. G. The Monte Carlo simulation of the biological effect of the 10B(n, alpha)7Li reaction in cells and tissue and its implication for boron neutron capture therapy. Radiat Res. 1987 Jul;111(1):14–25. [PubMed] [Google Scholar]
- Gabel D., Holstein H., Larsson B., Gille L., Ericson G., Sacker D., Som P., Fairchild R. G. Quantitative neutron capture radiography for studying the biodistribution of tumor-seeking boron-containing compounds. Cancer Res. 1987 Oct 15;47(20):5451–5454. [PubMed] [Google Scholar]
- Gavin P. R., Kraft S. L., Huiskamp R., Coderre J. A. A review: CNS effects and normal tissue tolerance in dogs. J Neurooncol. 1997 May;33(1-2):71–80. doi: 10.1023/a:1005773331737. [DOI] [PubMed] [Google Scholar]
- Hiratsuka J., Fukuda H., Kobayashi T., Karashima H., Yoshino K., Imajo Y., Mishima Y. The relative biological effectiveness of 10B-neutron capture therapy for early skin reaction in the hamster. Radiat Res. 1991 Nov;128(2):186–191. [PubMed] [Google Scholar]
- Imahori Y., Ueda S., Ohmori Y., Kusuki T., Ono K., Fujii R., Ido T. Fluorine-18-labeled fluoroboronophenylalanine PET in patients with glioma. J Nucl Med. 1998 Feb;39(2):325–333. [PubMed] [Google Scholar]
- Joel D. D., Fairchild R. G., Laissue J. A., Saraf S. K., Kalef-Ezra J. A., Slatkin D. N. Boron neutron capture therapy of intracerebral rat gliosarcomas. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9808–9812. doi: 10.1073/pnas.87.24.9808. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kabalka G. W., Smith G. T., Dyke J. P., Reid W. S., Longford C. P., Roberts T. G., Reddy N. K., Buonocore E., Hübner K. F. Evaluation of fluorine-18-BPA-fructose for boron neutron capture treatment planning. J Nucl Med. 1997 Nov;38(11):1762–1767. [PubMed] [Google Scholar]
- Kobayashi T., Kanda K. Analytical calculation of boron- 10 dosage in cell nucleus for neutron capture therapy. Radiat Res. 1982 Jul;91(1):77–94. [PubMed] [Google Scholar]
- Morris G. M., Coderre J. A., Hopewell J. W., Micca P. L., Fisher C. Boron neutron capture irradiation of the rat spinal cord: effects of variable doses of borocaptate sodium. Radiother Oncol. 1996 Jun;39(3):253–259. doi: 10.1016/0167-8140(95)01693-7. [DOI] [PubMed] [Google Scholar]
- Moses R., Kummermehr J. Radiation response of the mouse tongue epithelium. Br J Cancer Suppl. 1986;7:12–15. [PMC free article] [PubMed] [Google Scholar]
- Parkins C. S., Fowler J. F., Yu S. A murine model of lip epidermal/mucosal reactions to X-irradiation. Radiother Oncol. 1983 Nov;1(2):159–165. doi: 10.1016/s0167-8140(83)80018-8. [DOI] [PubMed] [Google Scholar]
- Smith D. R., Chandra S., Coderre J. A., Morrison G. H. Ion microscopy imaging of 10B from p-boronophenylalanine in a brain tumor model for boron neutron capture therapy. Cancer Res. 1996 Oct 1;56(19):4302–4306. [PubMed] [Google Scholar]
- Verrijk R., Huiskamp R., Begg A. C., Wheeler F. J., Watkins P. R. A comprehensive PC-based computer model for microdosimetry of BNCT. Int J Radiat Biol. 1994 Feb;65(2):241–253. doi: 10.1080/09553009414550271. [DOI] [PubMed] [Google Scholar]
- YAMAMOTO Y. L. The biological effectiveness of thermal neutrons and of the heavy particles from the B10(n, alpha)Li7 reaction for the rabbit's ear and its utilization for neutron capture therapy. Yokohama Med Bull. 1961 Feb;12:4–22. [PubMed] [Google Scholar]