Abstract
The 52-kDa activator protein (AP)-2 is a DNA-binding transcription factor which has been reported to have growth inhibitory effects in cancer cell lines and in human tumours. In this study the expression of AP-2α was analysed in 303 epithelial ovarian carcinomas by immunohistochemistry (IHC) with a polyclonal AP-2α antibody and its mRNA status was determined by in situ hybridization (ISH) and reverse transcriptase-polymerase chain reaction (RT-PCR). The immunohistochemical expression of AP-2α was correlated with clinicopathological variables, p21/WAF1 protein expression and survival. In normal ovaries, epithelial cells expressed AP-2α protein only in the cytoplasm. In carcinomas nuclear AP-2α expression was observed in 28% of the cases although cytoplasmic expression was more common (51%). The expression of AP-2α varied according to the histological subtype and differentiation. AP-2α and p21/WAF1 expressions did not correlate with each other. Both in univariate (P = 0.002) and multivariate analyses (relative risks (RR) 1.6, 95% confidence interval (CI) 1.13–2.18, P = 0.007) the high cytoplasmic AP-2α expression favoured the overall survival. In contrast, the nuclear AP-2α expression combined with low cytoplasmic expression increased the risk of dying of ovarian cancer (RR = 2.10, 95% CI 1.13–3.83, P = 0.018). The shift in the expression pattern of AP-2α (nuclear vs cytoplasmic) in carcinomas points out to the possibility that this transcription factor may be used by oncogenes in certain histological subtypes. Based on the mRNA analyses, the incomplete expression and translation of AP-2α in ovarian cancer may be due to post-transcriptional regulation. © 2000 Cancer Research Campaign
Keywords: epithelial ovarian cancer, prognosis, AP-2α, p21/WAF1
Full Text
The Full Text of this article is available as a PDF (633.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anttila M. A., Kosma V. M., Hongxiu J., Puolakka J., Juhola M., Saarikoski S., Syrjänen K. p21/WAF1 expression as related to p53, cell proliferation and prognosis in epithelial ovarian cancer. Br J Cancer. 1999 Apr;79(11-12):1870–1878. doi: 10.1038/sj.bjc.6690298. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bar-Eli M. Molecular mechanisms of melanoma metastasis. J Cell Physiol. 1997 Nov;173(2):275–278. doi: 10.1002/(SICI)1097-4652(199711)173:2<275::AID-JCP35>3.0.CO;2-C. [DOI] [PubMed] [Google Scholar]
- Batsché E., Muchardt C., Behrens J., Hurst H. C., Crémisi C. RB and c-Myc activate expression of the E-cadherin gene in epithelial cells through interaction with transcription factor AP-2. Mol Cell Biol. 1998 Jul;18(7):3647–3658. doi: 10.1128/mcb.18.7.3647. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bosari S., Viale G., Bossi P., Maggioni M., Coggi G., Murray J. J., Lee A. K. Cytoplasmic accumulation of p53 protein: an independent prognostic indicator in colorectal adenocarcinomas. J Natl Cancer Inst. 1994 May 4;86(9):681–687. doi: 10.1093/jnci/86.9.681. [DOI] [PubMed] [Google Scholar]
- Bosher J. M., Totty N. F., Hsuan J. J., Williams T., Hurst H. C. A family of AP-2 proteins regulates c-erbB-2 expression in mammary carcinoma. Oncogene. 1996 Oct 17;13(8):1701–1707. [PubMed] [Google Scholar]
- Bosher J. M., Williams T., Hurst H. C. The developmentally regulated transcription factor AP-2 is involved in c-erbB-2 overexpression in human mammary carcinoma. Proc Natl Acad Sci U S A. 1995 Jan 31;92(3):744–747. doi: 10.1073/pnas.92.3.744. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Casey G. The BRCA1 and BRCA2 breast cancer genes. Curr Opin Oncol. 1997 Jan;9(1):88–93. doi: 10.1097/00001622-199701000-00014. [DOI] [PubMed] [Google Scholar]
- Chen Y., Chen C. F., Riley D. J., Allred D. C., Chen P. L., Von Hoff D., Osborne C. K., Lee W. H. Aberrant subcellular localization of BRCA1 in breast cancer. Science. 1995 Nov 3;270(5237):789–791. doi: 10.1126/science.270.5237.789. [DOI] [PubMed] [Google Scholar]
- Chiu R., Imagawa M., Imbra R. J., Bockoven J. R., Karin M. Multiple cis- and trans-acting elements mediate the transcriptional response to phorbol esters. Nature. 1987 Oct 15;329(6140):648–651. doi: 10.1038/329648a0. [DOI] [PubMed] [Google Scholar]
- Foulkes W. D., Ragoussis J., Stamp G. W., Allan G. J., Trowsdale J. Frequent loss of heterozygosity on chromosome 6 in human ovarian carcinoma. Br J Cancer. 1993 Mar;67(3):551–559. doi: 10.1038/bjc.1993.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gilbertson R. J., Perry R. H., Kelly P. J., Pearson A. D., Lunec J. Prognostic significance of HER2 and HER4 coexpression in childhood medulloblastoma. Cancer Res. 1997 Aug 1;57(15):3272–3280. [PubMed] [Google Scholar]
- Goldman S. C., Chen C. Y., Lansing T. J., Gilmer T. M., Kastan M. B. The p53 signal transduction pathway is intact in human neuroblastoma despite cytoplasmic localization. Am J Pathol. 1996 May;148(5):1381–1385. [PMC free article] [PubMed] [Google Scholar]
- Hennig G., Löwrick O., Birchmeier W., Behrens J. Mechanisms identified in the transcriptional control of epithelial gene expression. J Biol Chem. 1996 Jan 5;271(1):595–602. doi: 10.1074/jbc.271.1.595. [DOI] [PubMed] [Google Scholar]
- Hietala K. A., Kosma V. M., Syrjänen K. J., Syrjänen S. M., Kellokoski J. K. Correlation of MIB-1 antigen expression with transcription factors Skn-1, Oct-1, AP-2, and HPV type in cervical intraepithelial neoplasia. J Pathol. 1997 Nov;183(3):305–310. doi: 10.1002/(SICI)1096-9896(199711)183:3<305::AID-PATH922>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
- Huhtala P., Chow L. T., Tryggvason K. Structure of the human type IV collagenase gene. J Biol Chem. 1990 Jul 5;265(19):11077–11082. [PubMed] [Google Scholar]
- Hyman S. E., Comb M., Pearlberg J., Goodman H. M. An AP-2 element acts synergistically with the cyclic AMP- and phorbol ester-inducible enhancer of the human proenkephalin gene. Mol Cell Biol. 1989 Jan;9(1):321–324. doi: 10.1128/mcb.9.1.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Imagawa M., Chiu R., Karin M. Transcription factor AP-2 mediates induction by two different signal-transduction pathways: protein kinase C and cAMP. Cell. 1987 Oct 23;51(2):251–260. doi: 10.1016/0092-8674(87)90152-8. [DOI] [PubMed] [Google Scholar]
- Ito Y., Kobayashi T., Takeda T., Komoike Y., Wakasugi E., Tamaki Y., Tsujimoto M., Matsuura N., Monden M. Expression of p21 (WAF1/CIP1) protein in clinical thyroid tissues. Br J Cancer. 1996 Oct;74(8):1269–1274. doi: 10.1038/bjc.1996.528. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jean D., Gershenwald J. E., Huang S., Luca M., Hudson M. J., Tainsky M. A., Bar-Eli M. Loss of AP-2 results in up-regulation of MCAM/MUC18 and an increase in tumor growth and metastasis of human melanoma cells. J Biol Chem. 1998 Jun 26;273(26):16501–16508. doi: 10.1074/jbc.273.26.16501. [DOI] [PubMed] [Google Scholar]
- Kannan P., Buettner R., Chiao P. J., Yim S. O., Sarkiss M., Tainsky M. A. N-ras oncogene causes AP-2 transcriptional self-interference, which leads to transformation. Genes Dev. 1994 Jun 1;8(11):1258–1269. doi: 10.1101/gad.8.11.1258. [DOI] [PubMed] [Google Scholar]
- Karin M., Hunter T. Transcriptional control by protein phosphorylation: signal transmission from the cell surface to the nucleus. Curr Biol. 1995 Jul 1;5(7):747–757. doi: 10.1016/s0960-9822(95)00151-5. [DOI] [PubMed] [Google Scholar]
- Karjalainen J. M., Kellokoski J. K., Eskelinen M. J., Alhava E. M., Kosma V. M. Downregulation of transcription factor AP-2 predicts poor survival in stage I cutaneous malignant melanoma. J Clin Oncol. 1998 Nov;16(11):3584–3591. doi: 10.1200/JCO.1998.16.11.3584. [DOI] [PubMed] [Google Scholar]
- Kleijn M., Scheper G. C., Voorma H. O., Thomas A. A. Regulation of translation initiation factors by signal transduction. Eur J Biochem. 1998 May 1;253(3):531–544. doi: 10.1046/j.1432-1327.1998.2530531.x. [DOI] [PubMed] [Google Scholar]
- Leask A., Byrne C., Fuchs E. Transcription factor AP2 and its role in epidermal-specific gene expression. Proc Natl Acad Sci U S A. 1991 Sep 15;88(18):7948–7952. doi: 10.1073/pnas.88.18.7948. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee W., Haslinger A., Karin M., Tjian R. Activation of transcription by two factors that bind promoter and enhancer sequences of the human metallothionein gene and SV40. Nature. 1987 Jan 22;325(6102):368–372. doi: 10.1038/325368a0. [DOI] [PubMed] [Google Scholar]
- Lüscher B., Mitchell P. J., Williams T., Tjian R. Regulation of transcription factor AP-2 by the morphogen retinoic acid and by second messengers. Genes Dev. 1989 Oct;3(10):1507–1517. doi: 10.1101/gad.3.10.1507. [DOI] [PubMed] [Google Scholar]
- Mitchell P. J., Timmons P. M., Hébert J. M., Rigby P. W., Tjian R. Transcription factor AP-2 is expressed in neural crest cell lineages during mouse embryogenesis. Genes Dev. 1991 Jan;5(1):105–119. doi: 10.1101/gad.5.1.105. [DOI] [PubMed] [Google Scholar]
- Mitchell P. J., Wang C., Tjian R. Positive and negative regulation of transcription in vitro: enhancer-binding protein AP-2 is inhibited by SV40 T antigen. Cell. 1987 Sep 11;50(6):847–861. doi: 10.1016/0092-8674(87)90512-5. [DOI] [PubMed] [Google Scholar]
- Moll U. M., Riou G., Levine A. J. Two distinct mechanisms alter p53 in breast cancer: mutation and nuclear exclusion. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):7262–7266. doi: 10.1073/pnas.89.15.7262. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ropponen K. M., Kellokoski J. K., Lipponen P. K., Pietiläinen T., Eskelinen M. J., Alhava E. M., Kosma V. M. p22/WAF1 expression in human colorectal carcinoma: association with p53, transcription factor AP-2 and prognosis. Br J Cancer. 1999 Sep;81(1):133–140. doi: 10.1038/sj.bjc.6690662. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sato T., Saito H., Morita R., Koi S., Lee J. H., Nakamura Y. Allelotype of human ovarian cancer. Cancer Res. 1991 Oct 1;51(19):5118–5122. [PubMed] [Google Scholar]
- Soong R., Knowles S., Williams K. E., Hammond I. G., Wysocki S. J., Iacopetta B. J. Overexpression of p53 protein is an independent prognostic indicator in human endometrial carcinoma. Br J Cancer. 1996 Aug;74(4):562–567. doi: 10.1038/bjc.1996.401. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sperry A., Jin L., Lloyd R. V. Microwave treatment enhances detection of RNA and DNA by in situ hybridization. Diagn Mol Pathol. 1996 Dec;5(4):291–296. doi: 10.1097/00019606-199612000-00011. [DOI] [PubMed] [Google Scholar]
- Subramaniam M., Hefferan T. E., Tau K., Peus D., Pittelkow M., Jalal S., Riggs B. L., Roche P., Spelsberg T. C. Tissue, cell type, and breast cancer stage-specific expression of a TGF-beta inducible early transcription factor gene. J Cell Biochem. 1998 Feb 1;68(2):226–236. [PubMed] [Google Scholar]
- Sugg S. L., Ezzat S., Rosen I. B., Freeman J. L., Asa S. L. Distinct multiple RET/PTC gene rearrangements in multifocal papillary thyroid neoplasia. J Clin Endocrinol Metab. 1998 Nov;83(11):4116–4122. doi: 10.1210/jcem.83.11.5271. [DOI] [PubMed] [Google Scholar]
- Sun X. F., Carstensen J. M., Zhang H., Stål O., Wingren S., Hatschek T., Nordenskjöld B. Prognostic significance of cytoplasmic p53 oncoprotein in colorectal adenocarcinoma. Lancet. 1992 Dec 5;340(8832):1369–1373. doi: 10.1016/0140-6736(92)92558-w. [DOI] [PubMed] [Google Scholar]
- Sun X., Shimizu H., Yamamoto K. Identification of a novel p53 promoter element involved in genotoxic stress-inducible p53 gene expression. Mol Cell Biol. 1995 Aug;15(8):4489–4496. doi: 10.1128/mcb.15.8.4489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sundfeldt K., Ivarsson K., Carlsson M., Enerbäck S., Janson P. O., Brännström M., Hedin L. The expression of CCAAT/enhancer binding protein (C/EBP) in the human ovary in vivo: specific increase in C/EBPbeta during epithelial tumour progression. Br J Cancer. 1999 Mar;79(7-8):1240–1248. doi: 10.1038/sj.bjc.6690199. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turner B. C., Zhang J., Gumbs A. A., Maher M. G., Kaplan L., Carter D., Glazer P. M., Hurst H. C., Haffty B. G., Williams T. Expression of AP-2 transcription factors in human breast cancer correlates with the regulation of multiple growth factor signalling pathways. Cancer Res. 1998 Dec 1;58(23):5466–5472. [PubMed] [Google Scholar]
- Wakasugi E., Kobayashi T., Tamaki Y., Ito Y., Miyashiro I., Komoike Y., Takeda T., Shin E., Takatsuka Y., Kikkawa N. p21(Waf1/Cip1) and p53 protein expression in breast cancer. Am J Clin Pathol. 1997 Jun;107(6):684–691. doi: 10.1093/ajcp/107.6.684. [DOI] [PubMed] [Google Scholar]
- Williams T., Admon A., Lüscher B., Tjian R. Cloning and expression of AP-2, a cell-type-specific transcription factor that activates inducible enhancer elements. Genes Dev. 1988 Dec;2(12A):1557–1569. doi: 10.1101/gad.2.12a.1557. [DOI] [PubMed] [Google Scholar]
- Williamson J. A., Bosher J. M., Skinner A., Sheer D., Williams T., Hurst H. C. Chromosomal mapping of the human and mouse homologues of two new members of the AP-2 family of transcription factors. Genomics. 1996 Jul 1;35(1):262–264. doi: 10.1006/geno.1996.0351. [DOI] [PubMed] [Google Scholar]
- Winning R. S., Shea L. J., Marcus S. J., Sargent T. D. Developmental regulation of transcription factor AP-2 during Xenopus laevis embryogenesis. Nucleic Acids Res. 1991 Jul 11;19(13):3709–3714. doi: 10.1093/nar/19.13.3709. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zeng Y. X., Somasundaram K., el-Deiry W. S. AP2 inhibits cancer cell growth and activates p21WAF1/CIP1 expression. Nat Genet. 1997 Jan;15(1):78–82. doi: 10.1038/ng0197-78. [DOI] [PubMed] [Google Scholar]
