Abstract
The loss of transcription factor AP-2α expression has been shown to associate with tumourigenicity of melanoma cell lines and poor prognosis in primary cutaneous melanoma. Altogether these findings suggest that the gene encoding AP-2α (TFAP2A) acts as a tumour suppressor in melanoma. To learn more of AP-2α’s down-regulation mechanisms, we compared the immunohistochemical AP-2α protein expression patterns with the corresponding mRNA expression detected by in situ hybridization in 52 primary melanomas. Of the 25 samples with AP-2α protein negative areas, 16 (64%) expressed mRNA throughout the consecutive section. Nine specimens (36%) contained equally mRNA- and protein-negative areas, suggesting that the loss of AP-2α protein associated with lack of the mRNA transcript. The highly AP-2α protein-positive tumours (n = 27) were concordantly mRNA positive in 25 (92.6%) cases. Thirteen primary tumours were further analysed using microsatellite markers D6S470 and D6S263 for loss of heterozygosity (LOH) of a locus harbouring TFAP2A. LOHs or chromosome 6 monosomy were found in four out of five (80%) informative AP-2α mRNA- and protein-negative tumour areas, but also within five out of 13 (38%) informative AP-2α mRNA-positive tumour areas. This chromosome region is thus suggestive of harbouring a putative tumour suppressor gene of cutaneous melanoma, but this referring specifically to TFAP2A could not be completely verified in this analysis. We conclude that a failure in post-transcriptional processing of AP-2α is a possible inactivation mechanism of AP-2α in cutaneous melanoma. Copyright 2000 Cancer Research Campaign© 2000 Cancer Research Campaign
Keywords: cutaneous melanoma, gene expression, AP-2, mRNA in situ hybridization, loss of heterozygosity
Full Text
The Full Text of this article is available as a PDF (303.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baker S. J., Fearon E. R., Nigro J. M., Hamilton S. R., Preisinger A. C., Jessup J. M., vanTuinen P., Ledbetter D. H., Barker D. F., Nakamura Y. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science. 1989 Apr 14;244(4901):217–221. doi: 10.1126/science.2649981. [DOI] [PubMed] [Google Scholar]
- Bar-Eli M. Molecular mechanisms of melanoma metastasis. J Cell Physiol. 1997 Nov;173(2):275–278. doi: 10.1002/(SICI)1097-4652(199711)173:2<275::AID-JCP35>3.0.CO;2-C. [DOI] [PubMed] [Google Scholar]
- Bosher J. M., Williams T., Hurst H. C. The developmentally regulated transcription factor AP-2 is involved in c-erbB-2 overexpression in human mammary carcinoma. Proc Natl Acad Sci U S A. 1995 Jan 31;92(3):744–747. doi: 10.1073/pnas.92.3.744. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buettner R., Kannan P., Imhof A., Bauer R., Yim S. O., Glockshuber R., Van Dyke M. W., Tainsky M. A. An alternatively spliced mRNA from the AP-2 gene encodes a negative regulator of transcriptional activation by AP-2. Mol Cell Biol. 1993 Jul;13(7):4174–4185. doi: 10.1128/mcb.13.7.4174. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Butz K., Geisen C., Ullmann A., Zentgraf H., Hoppe-Seyler F. Uncoupling of p21WAF1/CIP1/SDI1 mRNA and protein expression upon genotoxic stress. Oncogene. 1998 Aug 13;17(6):781–787. doi: 10.1038/sj.onc.1201995. [DOI] [PubMed] [Google Scholar]
- Canzian F., Salovaara R., Hemminki A., Kristo P., Chadwick R. B., Aaltonen L. A., de la Chapelle A. Semiautomated assessment of loss of heterozygosity and replication error in tumors. Cancer Res. 1996 Jul 15;56(14):3331–3337. [PubMed] [Google Scholar]
- Day D. A., Tuite M. F. Post-transcriptional gene regulatory mechanisms in eukaryotes: an overview. J Endocrinol. 1998 Jun;157(3):361–371. doi: 10.1677/joe.0.1570361. [DOI] [PubMed] [Google Scholar]
- Dodson M. K., Cliby W. A., Xu H. J., DeLacey K. A., Hu S. X., Keeney G. L., Li J., Podratz K. C., Jenkins R. B., Benedict W. F. Evidence of functional RB protein in epithelial ovarian carcinomas despite loss of heterozygosity at the RB locus. Cancer Res. 1994 Feb 1;54(3):610–613. [PubMed] [Google Scholar]
- Foulkes W. D., Ragoussis J., Stamp G. W., Allan G. J., Trowsdale J. Frequent loss of heterozygosity on chromosome 6 in human ovarian carcinoma. Br J Cancer. 1993 Mar;67(3):551–559. doi: 10.1038/bjc.1993.101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gaynor R. B., Muchardt C., Xia Y. R., Klisak I., Mohandas T., Sparkes R. S., Lusis A. J. Localization of the gene for the DNA-binding protein AP-2 to human chromosome 6p22.3-pter. Genomics. 1991 Aug;10(4):1100–1102. doi: 10.1016/0888-7543(91)90209-w. [DOI] [PubMed] [Google Scholar]
- Gonzalgo M. L., Bender C. M., You E. H., Glendening J. M., Flores J. F., Walker G. J., Hayward N. K., Jones P. A., Fountain J. W. Low frequency of p16/CDKN2A methylation in sporadic melanoma: comparative approaches for methylation analysis of primary tumors. Cancer Res. 1997 Dec 1;57(23):5336–5347. [PubMed] [Google Scholar]
- Huang S., Jean D., Luca M., Tainsky M. A., Bar-Eli M. Loss of AP-2 results in downregulation of c-KIT and enhancement of melanoma tumorigenicity and metastasis. EMBO J. 1998 Aug 3;17(15):4358–4369. doi: 10.1093/emboj/17.15.4358. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Imhof A., Schuierer M., Werner O., Moser M., Roth C., Bauer R., Buettner R. Transcriptional regulation of the AP-2alpha promoter by BTEB-1 and AP-2rep, a novel wt-1/egr-related zinc finger repressor. Mol Cell Biol. 1999 Jan;19(1):194–204. doi: 10.1128/mcb.19.1.194. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Isola J., DeVries S., Chu L., Ghazvini S., Waldman F. Analysis of changes in DNA sequence copy number by comparative genomic hybridization in archival paraffin-embedded tumor samples. Am J Pathol. 1994 Dec;145(6):1301–1308. [PMC free article] [PubMed] [Google Scholar]
- Jean D., Gershenwald J. E., Huang S., Luca M., Hudson M. J., Tainsky M. A., Bar-Eli M. Loss of AP-2 results in up-regulation of MCAM/MUC18 and an increase in tumor growth and metastasis of human melanoma cells. J Biol Chem. 1998 Jun 26;273(26):16501–16508. doi: 10.1074/jbc.273.26.16501. [DOI] [PubMed] [Google Scholar]
- Karjalainen J. M., Kellokoski J. K., Eskelinen M. J., Alhava E. M., Kosma V. M. Downregulation of transcription factor AP-2 predicts poor survival in stage I cutaneous malignant melanoma. J Clin Oncol. 1998 Nov;16(11):3584–3591. doi: 10.1200/JCO.1998.16.11.3584. [DOI] [PubMed] [Google Scholar]
- Kleijn M., Scheper G. C., Voorma H. O., Thomas A. A. Regulation of translation initiation factors by signal transduction. Eur J Biochem. 1998 May 1;253(3):531–544. doi: 10.1046/j.1432-1327.1998.2530531.x. [DOI] [PubMed] [Google Scholar]
- Knudson A. G., Jr Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A. 1971 Apr;68(4):820–823. doi: 10.1073/pnas.68.4.820. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Levine A. J., Momand J. Tumor suppressor genes: the p53 and retinoblastoma sensitivity genes and gene products. Biochim Biophys Acta. 1990 Jun 1;1032(1):119–136. doi: 10.1016/0304-419x(90)90015-s. [DOI] [PubMed] [Google Scholar]
- Liu S. Y., Redmond T. M. Role of the 3'-untranslated region of RPE65 mRNA in the translational regulation of the RPE65 gene: identification of a specific translation inhibitory element. Arch Biochem Biophys. 1998 Sep 1;357(1):37–44. doi: 10.1006/abbi.1998.0817. [DOI] [PubMed] [Google Scholar]
- Meier P., Koedood M., Philipp J., Fontana A., Mitchell P. J. Alternative mRNAs encode multiple isoforms of transcription factor AP-2 during murine embryogenesis. Dev Biol. 1995 May;169(1):1–14. doi: 10.1006/dbio.1995.1121. [DOI] [PubMed] [Google Scholar]
- Millikin D., Meese E., Vogelstein B., Witkowski C., Trent J. Loss of heterozygosity for loci on the long arm of chromosome 6 in human malignant melanoma. Cancer Res. 1991 Oct 15;51(20):5449–5453. [PubMed] [Google Scholar]
- Mitchell P. J., Timmons P. M., Hébert J. M., Rigby P. W., Tjian R. Transcription factor AP-2 is expressed in neural crest cell lineages during mouse embryogenesis. Genes Dev. 1991 Jan;5(1):105–119. doi: 10.1101/gad.5.1.105. [DOI] [PubMed] [Google Scholar]
- Mitchell P. J., Wang C., Tjian R. Positive and negative regulation of transcription in vitro: enhancer-binding protein AP-2 is inhibited by SV40 T antigen. Cell. 1987 Sep 11;50(6):847–861. doi: 10.1016/0092-8674(87)90512-5. [DOI] [PubMed] [Google Scholar]
- Noviello C., Courjal F., Theillet C. Loss of heterozygosity on the long arm of chromosome 6 in breast cancer: possibly four regions of deletion. Clin Cancer Res. 1996 Sep;2(9):1601–1606. [PubMed] [Google Scholar]
- Ohtaka-Maruyama C., Hanaoka F., Chepelinsky A. B. A novel alternative spliced variant of the transcription factor AP2alpha is expressed in the murine ocular lens. Dev Biol. 1998 Oct 1;202(1):125–135. doi: 10.1006/dbio.1998.8997. [DOI] [PubMed] [Google Scholar]
- Real L. M., Jimenez P., Cantón J., Kirkin A., García A., Abril E., Zeuthen J., Ruiz-Cabello F., Garrido F. In vivo and in vitro generation of a new altered HLA phenotype in melanoma-tumour-cell variants expressing a single HLA-class-I allele. Int J Cancer. 1998 Jan 19;75(2):317–323. doi: 10.1002/(sici)1097-0215(19980119)75:2<317::aid-ijc23>3.0.co;2-8. [DOI] [PubMed] [Google Scholar]
- Robertson G. P., Coleman A. B., Lugo T. G. Mechanisms of human melanoma cell growth and tumor suppression by chromosome 6. Cancer Res. 1996 Apr 1;56(7):1635–1641. [PubMed] [Google Scholar]
- Sellers W. R., Kaelin W. G., Jr Role of the retinoblastoma protein in the pathogenesis of human cancer. J Clin Oncol. 1997 Nov;15(11):3301–3312. doi: 10.1200/JCO.1997.15.11.3301. [DOI] [PubMed] [Google Scholar]
- Slominski A., Wortsman J., Nickoloff B., McClatchey K., Mihm M. C., Ross J. S. Molecular pathology of malignant melanoma. Am J Clin Pathol. 1998 Dec;110(6):788–794. doi: 10.1093/ajcp/110.6.788. [DOI] [PubMed] [Google Scholar]
- Sugg S. L., Ezzat S., Rosen I. B., Freeman J. L., Asa S. L. Distinct multiple RET/PTC gene rearrangements in multifocal papillary thyroid neoplasia. J Clin Endocrinol Metab. 1998 Nov;83(11):4116–4122. doi: 10.1210/jcem.83.11.5271. [DOI] [PubMed] [Google Scholar]
- Trent J. M., Stanbridge E. J., McBride H. L., Meese E. U., Casey G., Araujo D. E., Witkowski C. M., Nagle R. B. Tumorigenicity in human melanoma cell lines controlled by introduction of human chromosome 6. Science. 1990 Feb 2;247(4942):568–571. doi: 10.1126/science.2300817. [DOI] [PubMed] [Google Scholar]
- Turner B. C., Zhang J., Gumbs A. A., Maher M. G., Kaplan L., Carter D., Glazer P. M., Hurst H. C., Haffty B. G., Williams T. Expression of AP-2 transcription factors in human breast cancer correlates with the regulation of multiple growth factor signalling pathways. Cancer Res. 1998 Dec 1;58(23):5466–5472. [PubMed] [Google Scholar]
- Walker G. J., Palmer J. M., Walters M. K., Nancarrow D. J., Parsons P. G., Hayward N. K. Simple tandem repeat allelic deletions confirm the preferential loss of distal chromosome 6q in melanoma. Int J Cancer. 1994 Jul 15;58(2):203–206. doi: 10.1002/ijc.2910580210. [DOI] [PubMed] [Google Scholar]
- Wang E., Ma W. J., Aghajanian C., Spriggs D. R. Posttranscriptional regulation of protein expression in human epithelial carcinoma cells by adenine-uridine-rich elements in the 3'-untranslated region of tumor necrosis factor-alpha messenger RNA. Cancer Res. 1997 Dec 1;57(23):5426–5433. [PubMed] [Google Scholar]
- Williamson J. A., Bosher J. M., Skinner A., Sheer D., Williams T., Hurst H. C. Chromosomal mapping of the human and mouse homologues of two new members of the AP-2 family of transcription factors. Genomics. 1996 Jul 1;35(1):262–264. doi: 10.1006/geno.1996.0351. [DOI] [PubMed] [Google Scholar]
- Zeng Y. X., Somasundaram K., el-Deiry W. S. AP2 inhibits cancer cell growth and activates p21WAF1/CIP1 expression. Nat Genet. 1997 Jan;15(1):78–82. doi: 10.1038/ng0197-78. [DOI] [PubMed] [Google Scholar]