Abstract
AQ4 (1,4-Bis-{[2-(dimethylamino-N-oxide)ethyl]amino}5,8-dihydroxyanthracene-9, 10-dione) is a prodrug designed to be excluded from cell nuclei until bioreduced in hypoxic cells to AQ4, a DNA intercalator and topoisomerase II poison. Thus, AQ4N is a highly selective bioreductive drug that is activated in, and is preferentially toxic to, hypoxic cells in tumours. Five murine tumours (MAC16, MAC26, NT, SCCVII and RIF-1) have been used to investigate the anti-tumour effects of AQ4N. In only one tumour (MAC16) was AQ4N shown to be active as a single agent. However, when combined with methods to increase the hypoxic tumour fraction in RIF-1 (by physical clamping) and MAC26 tumours (using hydralazine) there was a substantial enhancement in anti-tumour effect. Notably, RIF-1 tumours treated with AQ4N (250 mg kg−1) followed 15 min later by physically occluding the blood supply to the tumour for 90 min, resulted in a 13-fold increase in growth delay. When combined with radiation or chemotherapy, AQ4N substantially increased the effectiveness of these modalities in a range of in vivo model systems. AQ4N potentiates the action of radiation in both a drug and radiation dose-dependent manner. Further the enhancement observed is schedule-independent with AQ4N giving similar effects when given at any time within 16 h before or after the radiation treatment. In combination with chemotherapy it is shown that AQ4N potentiates the activity of cyclophosphamide, cisplatin and thiotepa. Both the chemotherapeutic drugs and AQ4N are given at doses which individually are close to their estimated maximum tolerated dose (data not included) which provides indirect evidence that in the combination chemotherapy experiments there is some tumour selectivity in the enhanced action of the drugs. © 2000 Cancer Research Campaign
Keywords: AQ4N, radiotherapy, bioreduction, cyclophosphamide, cisplatin, thiotepa
Full Text
The Full Text of this article is available as a PDF (101.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bibby M. C., Double J. A., Ali S. A., Fearon K. C., Brennan R. A., Tisdale M. J. Characterization of a transplantable adenocarcinoma of the mouse colon producing cachexia in recipient animals. J Natl Cancer Inst. 1987 Mar;78(3):539–546. [PubMed] [Google Scholar]
- Bibby M. C., Double J. A., Loadman P. M. Unique chemosensitivity of MAC 16 tumours to flavone acetic acid (LM975, NSC 347512). Br J Cancer. 1988 Sep;58(3):341–344. doi: 10.1038/bjc.1988.215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bremner J. C., Stratford I. J., Bowler J., Adams G. E. Bioreductive drugs and the selective induction of tumour hypoxia. Br J Cancer. 1990 May;61(5):717–721. doi: 10.1038/bjc.1990.161. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown J. M., Giaccia A. J. Tumour hypoxia: the picture has changed in the 1990s. Int J Radiat Biol. 1994 Jan;65(1):95–102. doi: 10.1080/09553009414550131. [DOI] [PubMed] [Google Scholar]
- Brown J. M., Wang L. H. Tirapazamine: laboratory data relevant to clinical activity. Anticancer Drug Des. 1998 Sep;13(6):529–539. [PubMed] [Google Scholar]
- Denekamp J., Harris S. R. Tests of two electron-affinic radiosensitizers in vivo using regrowth of an experimental carcinoma. Radiat Res. 1975 Feb;61(2):191–203. [PubMed] [Google Scholar]
- Denekamp J., Hill S. A., Hobson B. Vascular occlusion and tumour cell death. Eur J Cancer Clin Oncol. 1983 Feb;19(2):271–275. doi: 10.1016/0277-5379(83)90426-1. [DOI] [PubMed] [Google Scholar]
- Hejmadi M. V., McKeown S. R., Friery O. P., McIntyre I. A., Patterson L. H., Hirst D. G. DNA damage following combination of radiation with the bioreductive drug AQ4N: possible selective toxicity to oxic and hypoxic tumour cells. Br J Cancer. 1996 Feb;73(4):499–505. doi: 10.1038/bjc.1996.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kim I. H., Brown J. M. Reoxygenation and rehypoxiation in the SCCVII mouse tumor. Int J Radiat Oncol Biol Phys. 1994 Jun 15;29(3):493–497. doi: 10.1016/0360-3016(94)90444-8. [DOI] [PubMed] [Google Scholar]
- Kivistö K. T., Fritz P., Linder A., Friedel G., Beaune P., Kroemer H. K. Immunohistochemical localization of cytochrome P450 3A in human pulmonary carcinomas and normal bronchial tissue. Histochem Cell Biol. 1995 Jan;103(1):25–29. doi: 10.1007/BF01464472. [DOI] [PubMed] [Google Scholar]
- Massaad L., de Waziers I., Ribrag V., Janot F., Morizet J., Beaune P. H., Gouyette A., Chabot G. G. Dépistage des principaux enzymes impliqués dans le métabolisme des médicaments anticancéreux dans les tumeurs coliques humaines et murines. Bull Cancer. 1993 May;80(5):397–407. [PubMed] [Google Scholar]
- McKay J. A., Murray G. I., Weaver R. J., Ewen S. W., Melvin W. T., Burke M. D. Xenobiotic metabolising enzyme expression in colonic neoplasia. Gut. 1993 Sep;34(9):1234–1239. doi: 10.1136/gut.34.9.1234. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McKeown S. R., Friery O. P., McIntyre I. A., Hejmadi M. V., Patterson L. H., Hirst D. G. Evidence for a therapeutic gain when AQ4N or tirapazamine is combined with radiation. Br J Cancer Suppl. 1996 Jul;27:S39–S42. [PMC free article] [PubMed] [Google Scholar]
- McKeown S. R., Hejmadi M. V., McIntyre I. A., McAleer J. J., Patterson L. H. AQ4N: an alkylaminoanthraquinone N-oxide showing bioreductive potential and positive interaction with radiation in vivo. Br J Cancer. 1995 Jul;72(1):76–81. doi: 10.1038/bjc.1995.280. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moore J. V. The dynamics of tumor cords in an irradiated mouse mammary carcinoma with a large hypoxic cell component. Jpn J Cancer Res. 1988 Feb;79(2):236–243. doi: 10.1111/j.1349-7006.1988.tb01582.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Murray G. I., Weaver R. J., Paterson P. J., Ewen S. W., Melvin W. T., Burke M. D. Expression of xenobiotic metabolizing enzymes in breast cancer. J Pathol. 1993 Mar;169(3):347–353. doi: 10.1002/path.1711690312. [DOI] [PubMed] [Google Scholar]
- Patterson A. V., Saunders M. P., Chinje E. C., Patterson L. H., Stratford I. J. Enzymology of tirapazamine metabolism: a review. Anticancer Drug Des. 1998 Sep;13(6):541–573. [PubMed] [Google Scholar]
- Patterson L. H., Craven M. R., Fisher G. R., Teesdale-Spittle P. Aliphatic amine N-oxides of DNA binding agents as bioreductive drugs. Oncol Res. 1994;6(10-11):533–538. [PubMed] [Google Scholar]
- Patterson L. H. Rationale for the use of aliphatic N-oxides of cytotoxic anthraquinones as prodrug DNA binding agents: a new class of bioreductive agent. Cancer Metastasis Rev. 1993 Jun;12(2):119–134. doi: 10.1007/BF00689805. [DOI] [PubMed] [Google Scholar]
- Quinn P. K., Bibby M. C., Cox J. A., Crawford S. M. The influence of hydralazine on the vasculature, blood perfusion and chemosensitivity of MAC tumours. Br J Cancer. 1992 Aug;66(2):323–330. doi: 10.1038/bjc.1992.264. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Raleigh S. M., Wanogho E., Burke M. D., McKeown S. R., Patterson L. H. Involvement of human cytochromes P450 (CYP) in the reductive metabolism of AQ4N, a hypoxia activated anthraquinone di-N-oxide prodrug. Int J Radiat Oncol Biol Phys. 1998 Nov 1;42(4):763–767. doi: 10.1016/s0360-3016(98)00308-3. [DOI] [PubMed] [Google Scholar]
- Russell R. L., Pedersen A. N., Kantor J., Geisinger K., Long R., Zbieranski N., Townsend A., Shelton B., Brünner N., Kute T. E. Relationship of nm23 to proteolytic factors, proliferation and motility in breast cancer tissues and cell lines. Br J Cancer. 1998 Sep;78(6):710–717. doi: 10.1038/bjc.1998.566. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Siim B. G., Menke D. R., Dorie M. J., Brown J. M. Tirapazamine-induced cytotoxicity and DNA damage in transplanted tumors: relationship to tumor hypoxia. Cancer Res. 1997 Jul 15;57(14):2922–2928. [PubMed] [Google Scholar]
- Smith P. J., Blunt N. J., Desnoyers R., Giles Y., Patterson L. H. DNA topoisomerase II-dependent cytotoxicity of alkylaminoanthraquinones and their N-oxides. Cancer Chemother Pharmacol. 1997;39(5):455–461. doi: 10.1007/s002800050598. [DOI] [PubMed] [Google Scholar]
- Smith P. J., Desnoyers R., Blunt N., Giles Y., Patterson L. H., Watson J. V. Flow cytometric analysis and confocal imaging of anticancer alkylaminoanthraquinones and their N-oxides in intact human cells using 647-nm krypton laser excitation. Cytometry. 1997 Jan 1;27(1):43–53. [PubMed] [Google Scholar]
- Stratford I. J., Adams G. E., Godden J., Howells N. Induction of tumour hypoxia post-irradiation: a method for increasing the sensitizing efficiency of misonidazole and RSU 1069 in vivo. Int J Radiat Biol. 1989 Mar;55(3):411–422. doi: 10.1080/09553008914550451. [DOI] [PubMed] [Google Scholar]
- Stratford I. J., Workman P. Bioreductive drugs into the next millennium. Anticancer Drug Des. 1998 Sep;13(6):519–528. [PubMed] [Google Scholar]
- Twentyman P. R., Brown J. M., Gray J. W., Franko A. J., Scoles M. A., Kallman R. F. A new mouse tumor model system (RIF-1) for comparison of end-point studies. J Natl Cancer Inst. 1980 Mar;64(3):595–604. [PubMed] [Google Scholar]
- UKCCCR guidelines for the welfare of animals in experimental neoplasia. Br J Cancer. 1988 Jul;58(1):109–113. doi: 10.1038/bjc.1988.174. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wilson W. R., Denny W. A., Pullen S. M., Thompson K. M., Li A. E., Patterson L. H., Lee H. H. Tertiary amine N-oxides as bioreductive drugs: DACA N-oxide, nitracrine N-oxide and AQ4N. Br J Cancer Suppl. 1996 Jul;27:S43–S47. [PMC free article] [PubMed] [Google Scholar]
- Workman P., Stratford I. J. The experimental development of bioreductive drugs and their role in cancer therapy. Cancer Metastasis Rev. 1993 Jun;12(2):73–82. doi: 10.1007/BF00689802. [DOI] [PubMed] [Google Scholar]